
1 Introduction

When we want to study a subject in Mathematics, we first have to agree upon

what we assume we all already understand.

In this course we will assume that we are all familiar with the R eal Numbers.

B efore we list the basic ax ioms the R eal Numbers, in the seq uel denoted by R,

satisfy, we will briefl y review more elementary concepts of numbers.

1.1 T h e S e t of N a tura l N um b e rs

When we start learning Mathematics in elementary school, we live in the world

of NA T U R A L NU MB E R S , which we will denote by N:

N = {1, 2, 3, 4, . . .}

Natural numbers are the “ natural” objects to count things around us with. T he

first thing we learn is to add natural numbers, then later on we start to multiply.

B esides their ex istence, we will tak e the following characteriz ation of the Nat-

ural Numbers N for granted throughout the course:

A x iom N 1 1 ∈ N.

A x iom N 2 I f n ∈ N, then n + 1 ∈ N.

A x iom N 3 I f n 6= m, then n + 1 6= m + 1.

A x iom N 4 T here is no natural number n ∈ N, such that n+ 1 = 1.

A x iom N 5 I f a subset M ⊆ N satisfies (1 ) 1 ∈ M , and (2 ) m ∈
M ⇒ m + 1 ∈ M , then M = N.

T he first three ax ioms describe the features of the counting process: We start

counting at 1 , every counting number has a “ successor” , and counting is not

“ cyclic” . T he last ax iom guarantees the P rincip le of Induction:
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Task 1.1 Let P (n) be a predicate with domain N. If

1. P (1) is true, and

2. Whenever P (n) is true, then P (n + 1) is true,

then P (n) is true for all n ∈ N.

1.2 Integ ers, R ational and Irrational Numbers

D eficiencies of the system of natural numbers start to appear when we want to

divide— the quotient of two natural numbers is not necessarily a natural num-

ber, or when we want to subtract— the difference of two natural numbers is not

necessarily a natural number. This leads quite naturally to two extensions of

the concept of number.

The set of INTEG ERS, denoted by Z, is the set

Z = {0, 1,−1, 2,−2, 3,−3, . . .}.

The set of RATIO NAL NUMBERS Q is defined as

Q =

{

p

q
| p, q ∈ Z and q 6= 0

}

.

Real numbers that are not rational are called IRRATIO NAL NUMBERS. The

existence of irrational numbers, first discovered by the P ythagoreans in about

5 20 B.C ., must have come as a major surprise to G reek Mathematicians:

Task 1.2 The square root of 2 is irrational. (
√

2 is the positive number

whose square is 2.)
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1.3 Groups

Next we will put the properties of addition and multiplication of real numbers

into a wider context by introducing the concept of an “abelian group” and, in

the next section, the concept of a “field”.

A set G with a binary operation ∗ is called an ABELIAN GROUP, if (G, ∗)
satisfies the following axioms:

G1 ∗ is a map from G × G to G.

G2 (Associativ ity ) F or all a, b, c ∈ G

(a ∗ b) ∗ c = a ∗ (b ∗ c)

G3 (C ommutativ ity ) F or all a, b ∈ G

a ∗ b = b ∗ a

G4 (E xistence of a neutral element) There is an element n ∈ G
such that for all a ∈ G

a ∗ n = a

G5 (E xistence of inv erse elements) F or every a ∈ G there exists

b ∈ G such that

a ∗ b = n

The sets Z, Q and R are examples of abelian groups when endowed with the

usual addition + . The neutral element in these cases is 0; it is customary to

denote the inverse element of a by −a.

The sets Q \ {0} and R \ {0} also form abelian groups under the usual mul-

tiplication · . In these cases we denote the neutral element by 1; the inverse

element of a is customarily denoted by 1/ a or by a−1.
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Exercise 1.3 Write down the axioms G1– G5 explicitly for the multi-

plicative group (Q \ {0}, ·).

Addition and multiplication of rational and real numbers interact in a reason-

able manner—the following DISTRIBUTIV E LAW holds:

D L For all a, b, c ∈ R

(a + b) · c = (a · c) + (b · c)

1.4 F ields

In short, a set F together with an addition + and a multiplication · is called a

FIELD, if

F 1 (F, +) is an abelian group (with neutral element 0).

F 2 (F \ {0}, ·) is an abelian group (with neutral element 1).

F 3 For all a, b, c ∈ F : (a + b) · c = (a · c) + (b · c).

The rational numbers and the real numbers are examples of fields.

Another example of a field is the set of complex numbers C.

C = {a + bi | a, b ∈ R}

Addition and multiplication of complex numbers are defined as follows:

(a + bi) + (c + di) = (a + c) + (b + d)i,

and

(a + bi) · (c + di) = (ac − bd) + (ad + bc)i,

respectively.

A field F endowed with a relation < is called an ORDERED FIELD if



1.5 The Completeness Axiom 5

O 1 For all x, y, z ∈ F

x < y implies x + z < y + z

O 2 For all x, y ∈ F and all z > 0

x < y implies x · z < y · z

O 3 For all x, y, z ∈ F

x < y and y < z implies x < z

O 4 For all x, y ∈ F

x < y, y < x, or x = y

Both the rational numbers Q and the real numbers R form ordered fields. The

complex numbers C cannot be ordered in such a way.

1.5 The Completeness Axiom

Y ou probably have seen books entitled “Real Analysis” and “Complex Analy-

sis” in the library. There are no books on “Rational Analysis”.

Why? What is the main difference between the two ordered fields of Q and

R? —The ordered field R of real numbers is COMPLETE: sequences of real

numbers have the following property.

C Let (an) be an increasing sequence of real numbers. If (an) is

bounded from above, then (an) converges.

The ordered field Q of rational numbers, on the other hand, is not complete.

It should therefore not surprise you that the Completeness Axiom will play a

central part throughout the course! We will discuss this axiom in great detail in

Section 2.3 .

The complex numbers C also form a complete field. Section 2.6 will give a

hint on how to write down an appropriate completeness axiom for the field C.



6 Introduction

1.6 Summary: An Axiomatic System for the Set of Real Numbers

Below is a summary of the properties of the real numbers R we will take for

granted throughout the course:

The set of real numbers R with its natural operations of +, ·, and < forms a

complete ordered field. This means that the real numbers satisfy the following

axioms:

Axiom 1 + is a map from R × R to R.

Axiom 2 For all a, b, c ∈ R

(a + b) + c = a + (b + c)

Axiom 3 For all a, b ∈ R

a + b = b + a

Axiom 4 There is an element 0 ∈ R such that for all a ∈ R

a + 0 = a

Axiom 5 For every a ∈ R there exists b ∈ R such that

a + b = 0

Axiom 6 · is a map from R \ {0} × R \ {0} to R \ {0}.

Axiom 7 For all a, b, c ∈ R \ {0}

(a · b) · c = a · (b · c)

Axiom 8 For all a, b ∈ R \ {0}

a · b = b · a

Axiom 9 There is an element 1 ∈ R \ {0} such that for all a ∈
R \ {0}

a · 1 = a
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Axiom 10 For every a ∈ R \ {0} there exists b ∈ R \ {0} such

that

a · b = 1

Axiom 11 For all a, b, c ∈ R

(a + b) · c = (a · c) + (b · c)

Axiom 12 For all x, y, z ∈ R

x < y implies x + z < y + z

Axiom 13 For all x, y ∈ R and all z > 0

x < y implies x · z < y · z

Axiom 14 For all x, y, z ∈ R

x < y and y < z implies x < z

Axiom 15 For all x, y ∈ R

x < y, y < x, or x = y

Axiom 16 Let (an) be an increasing sequence of real numbers. If

(an) is bounded from above, then (an) converges.

1.7 The Absolute Value

The ABSOLUTE VALUE of a real number a is defined as

|a| = m a x {a,−a}.

For instance, |4| = 4, | − π| = π. The quantity |a − b| measures the distance

on the real number line between two real numbers a and b; in particular |a|
measures the distance of a from 0.

The following result is known as the triangle ineq uality:
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Exercise 1.4 For all a, b ∈ R:

|a + b| ≤ |a| + |b|

A related result is called the reverse triangle inequality:

Exercise 1.5 For all a, b ∈ R:

|a − b| ≥
∣

∣

∣

∣

|a| − |b|
∣

∣

∣

∣

You will use both of these inequalities frequently throughout the course.

1.8 M aximum and M inimum

Given a non-empty set A of real numbers, a real number b is called MAX IMUM

OF TH E SET A, if b ∈ A and b ≥ a for all a ∈ A. Similarly, a real number s is

called MINIMUM OF TH E SET A, if s ∈ A and s ≤ a for all a ∈ A. We write

b = max A, and s = min A.

Exercise 1.6 Show that a set can have at most one maximum.

Exercise 1.7 Find all subsets A of the set of real numbers with the

property that min A = max A.
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Task 1.8 Show that finite non-empty sets of real numbers always have

a minimum.

1.9 Natural Numbers and Dense Sets inside the Real Numbers

In the sequel, we will also assume the following axiom for the Natural Num-

bers, even though it can be deduced, for example, from the Completeness Ax-

iom of the Real Numbers (see Optional Task 2.1):

Axiom N6 For every positive real number s ∈ R, s > 0, there is

a natural number n ∈ N such that n − 1 ≤ s < n.

Exercise 1.9 Show that for every positive real number r, there is a

natural number n, such that 0 <
1

n
< r.

We say that a set A of real numbers is DENSE in R, if for all real numbers x < y
there is an element a ∈ A satisfying x < a < y.

Task 1.10 The set of rational numbers Q is dense in R.

Task 1.11 The set of irrational numbers R \ Q is dense in R.




