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1. Introduction

A Banach space X has property (S) if every weakly null sequence in BaX, the unit ball of X, has a
subsequence which is C-dominated by the unit vector basis of c0 for some constant C < ∞. In [11] it was
shown that if X has property (S), then the constant C can be chosen to be independent of the particular
weakly null sequence in BaX.

Here we generalize this result to the case of upper ℓp-estimates.

Definition 1.1.
Let 1 < p < ∞. A Banach space X has property (Sp) if every weakly null sequence (xn) has a

subsequence (yn) such that for some constant C < ∞,

(1)

∥∥∥∥∥
∞∑

n=1

αnyn

∥∥∥∥∥ ≤ C for all (αn) ∈ IR with

( ∞∑
n=1

|αn|p
)1/p

≤ 1 .

X has property (USp), if there is a constant C such that every normalized weakly null sequence in BaX
admits a subsequence (yn) so that (1) holds. We say that (yn) has a C-upper ℓp-estimate, if (1) holds.

Our main result is

Theorem 1. A Banach space has property (Sp) if and only if it has property (USp).

Let us give some examples of Banach spaces which enjoy property (Sp): ℓp has property (Sp) (1 < p <
∞). Lp[0, 1] has property (Sr), where r = min{2, p}. (More generally, every Banach space which has type p
and can be embedded into a Banach space with an unconditional basis has property (Sp).) The James space
J and its tree version JT have property (S2) [1]. It follows from the results of James [8] (see also [7]) that
every superreflexive Banach space has property (Sp) for some 1 < p < ∞. Let us note that every subspace
of a Banach space X with property (Sp) has property (Sp). If X is in addition reflexive, quotients of X have
property (Sp) as well.

A technique employed in the proof of Theorem 1 allows us to strengthen this last result in the following
way:

Corollary 1. Let X be a Banach space with property (Sp) and let Y be a subspace of X not containing
ℓ1. Then the quotient space X/Y has property (USp).

Our proof of Theorem 1 is strongly motivated by the arguments in [11]. In fact, the proof we present
here is valid for the case of property (S) as well (with the usual changes of notation). The key proposition in
our proof (Proposition 3.4) is an improvement to our construction in [11]. Furthermore we no longer have
Johnson’s lemma [11, Proposition 3.4] at our disposal.

The following remarks were made in [11] but seem worth recalling.

* This is part of this author’s Ph.D. Dissertation prepared at The University of Texas at Austin under
the supervision of H.P. Rosenthal.

Research partially supported by NSF Grant DMS-8601752.
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One might ask whether a result like Theorem 1 remains true, if one considers the property that every
normalized weakly null sequence in X admits a subsequence which is equivalent to the unit vector basis of
ℓp.

On the one hand Johnson and the second named author [9] have shown this to be false: for 1 < p < 2 they
construct a subspace of Lp[0, 1] where each normalized weakly null sequence has a subsequence equivalent to
the unit vector basis of ℓp, but where the equivalence constant cannot be chosen uniformly for all sequences
in question. Their construction can be carried out to produce counterexamples for p ≥ 2 as well (not within
Lp[0, 1]).

We are indebted to H.P. Rosenthal for pointing out to us that under stronger conditions on the other
hand, one obtains the following corollary of Theorem 1:

Corollary 2. Let X be a Banach space such that X has property (Sp) and X∗ has property (Sq) for some
1 < p, q < ∞ with 1

p + 1
q = 1. Then the following properties hold for some constant C < ∞:

(i) If ℓ1 does not embed inX∗, then every normalized weakly null sequence inX contains a subsequence
which is C-equivalent to the unit vector basis of ℓp and whose closed linear span is C-complemented
in X.

(ii) If ℓ1 does not embed inX, then every normalized weakly null sequence inX∗ contains a subsequence
which is C-equivalent to the unit vector basis of ℓq and whose closed linear span is C-complemented
in X∗.

The proof of Theorem 1 will be presented in Section 3. In order to motivate the quite technical proof
we present a version of Theorem 1 for spreading models in Section 2. We hope that the spreading-model
version (which is quite easy and does not follow from Theorem 1) will give the reader some insight into our
approach to the proof of Theorem 1. Section 4 contains the proof of the corollaries; we also state a “weak
Cauchy sequence” criterion for property (Sp), due to C. Schumacher [16].

Our notation is standard as can be found in [5] or [12]. If F is a subset in a Banach space X, then [F ]
denotes the closed linear span of F in X. If L is an infinite subsequence of IN, we denote by P∞(L) the set
of all infinite subsequences of L. We would like to thank Haskell Rosenthal for his useful suggestions.

2. The spreading model case

Let us recall that a semi-normalized basic sequence (xn) in a Banach space X is said to have a spreading
model (en), if (en) is basic in some Banach space such that for all k ∈ IN and for all ε > 0 there is an N ∈ IN
such that for all N < n1 < n2 < . . . < nk and for all scalars (ai) with supi |ai| ≤ 1∣∣∣∣∣

∥∥∥∥∥
k∑

i=1

aiei

∥∥∥∥∥−
∥∥∥∥∥

k∑
i=1

aixni

∥∥∥∥∥
∣∣∣∣∣ < ε .

If (xn) has a spreading model, the model is unique up to 1-equivalence. Every normalized weakly null
sequence admits a subsequence with an unconditional spreading model [3], [4].

Definition 2.1.

Let 1 < p < ∞. A Banach space has property (Mp) if every normalized weakly null sequence in X
admits a subsequence with a spreading model (en) which is C-dominated by the unit vector basis of ℓp, i.e.,∥∥∥∥∥∑

i

aiei

∥∥∥∥∥ ≤ C for all (ai) ∈ Ba ℓp .

We say X has property (UMp), if the constant C can be chosen uniformly for all normalized weakly null
sequences in X.

We will show the following analogue of Theorem 1:
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Proposition 2.2. A Banach space with property (Mp) has property (UMp).

For its proof we will need some technical definitions. Let 1 < p < ∞ and let X be a Banach space. A
normalized weakly null sequence in X is called good (respectively C-good), if it has a spreading model which
satisfies an upper ℓp-estimate (respectively a C-upper ℓp-estimate). A good sequence in X is called M -bad ,
if its spreading model fails to have an M -upper ℓp-estimate. An array (xn

i )∞i,n=1 of elements in X is called
a bad array , if each column (xn

i )i is an Mn-bad sequence for all n ∈ IN and Mn → ∞ as n → ∞. An array
(yni ) is called a subarray of an array (xn

i ), if each column of (yni ) is a subsequence of (xkn
i )i for some sequence

k1 < k2 < . . . . Finally let us say a bad array (xn
i ) satisfies the ℓp-array procedure (for spreading models) if

it admits a subarray (yni ) and if there are positive scalars an with
∑

an ≤ 1 so that yi =
∑∞

n=1 any
n
i has

no subsequence with a spreading model which has an upper ℓp-estimate. (Note that (yi) is automatically
weakly null.)

Proof of Proposition 2.2.

Suppose a Banach space X has property (Mp) but fails property (UMp). Then X contains a bad array.
We will show that every bad array satisfies the ℓp-array procedure for spreading models, thus obtaining
a contradiction. Indeed, a bad array (xn

i ) contains a (bad) subarray, which is basic in some order (see
Lemma 3.7 below). The sequence (yn) obtained from this subarray by the ℓp-array procedure is then semi-
normalized and weakly null. The sequence (yn/∥yn∥) then has no spreading model with an upper ℓp-estimate.

Let (xn
i ) be a bad array in X. We claim that we can find a subarray (yni ) of (xn

i ), positive scalars an
with

∑
an ≤ 1, kN ∈ IN and constants CN and MN such that the following properties hold for all N ∈ IN:

(2) (yNi )i is a CN -good sequence with its spreading model denoted by (eNi )

∥∥∥∥∥
kN∑
i=1

bNi eNi

∥∥∥∥∥ > 2MN for some (bNi ) ∈ Ba ℓp(3)

aNMN > N(4)

N−1∑
n=1

anCn < 1
8aNMN(5)

kN

∞∑
n=N+1

an < 1
4aNMN .(6)

Once the claim has been established we proceed as follows. We set yi =
∑∞

n=1 any
n
i and let (yi)i∈L, L ∈

P∞(IN), be a subsequence of (yi) with spreading model (ei). Let C < ∞ be given. We have to show that
(ei) does not have a C-upper ℓp-estimate. By (4) we can choose N so that aNMN > 4C. Next we choose
j1 < j2 < . . . < jkN in L with j1 large enough, so that we obtain for all n ≤ N and all (ci) ⊆ IR with |ci| ≤ 1:

(7) 2

∥∥∥∥∥
kN∑
i=1

cie
n
i

∥∥∥∥∥ ≥

∥∥∥∥∥
kN∑
i=1

ciy
n
ji

∥∥∥∥∥ ≥ 1
2

∥∥∥∥∥
kN∑
i=1

cie
n
i

∥∥∥∥∥ and

∥∥∥∥∥
kN∑
i=1

ciyji

∥∥∥∥∥ ≤ 2

∥∥∥∥∥
kN∑
i=1

ciei

∥∥∥∥∥ .
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By (3) we can find (bNi )kN
i=1 ∈ Ba ℓp with

∥∥∥∑kN

i=1 b
N
i eNi

∥∥∥ > 2MN . Thus

∥∥∥∥∥
kN∑
i=1

bNi yji

∥∥∥∥∥ =

∥∥∥∥∥
kN∑
i=1

bNi

( ∞∑
n=1

any
n
ji

)∥∥∥∥∥
≥ aN

∥∥∥∥∥
kN∑
i=1

bNi yNji

∥∥∥∥∥−
N−1∑
n=1

an

∥∥∥∥∥
kN∑
i=1

bNi ynji

∥∥∥∥∥−
∞∑

n=N+1

an

∥∥∥∥∥
kN∑
i=1

bNi ynji

∥∥∥∥∥
≥ 1

2aN

∥∥∥∥∥
kN∑
i=1

bNi eNi

∥∥∥∥∥−
N−1∑
n=1

2an

∥∥∥∥∥
kN∑
i=1

bNi eni

∥∥∥∥∥−
∞∑

n=N+1

an

∥∥∥∥∥
kN∑
i=1

bNi ynji

∥∥∥∥∥ by (7)

≥ aNMN − 2

N−1∑
n=1

anCN − kN

∞∑
n=N+1

an using (2)

≥ aNMN − aNMN

4
− aNMN

4
≥ aNMN

2
≥ 2C by (5) and (6) .

Consequently ∥
∑kN

i=1 b
N
i ei∥ > C by (7).

It is left to present the construction of the subarray (yni ). Let a1 = 1/2. Since (xn
i ) is a bad array we

can find a column n such that the sequence (xn
i )i has a subsequence (zi) which has a spreading model (e1i )

which fails to satisfy a 2M1-upper ℓp-estimate, where M1 > 2, i.e., ∥
∑k1

i=1 b
1
i e

1
i ∥ > 2M1 for some k1 ∈ IN

and some (b1i )k1
i=1 ∈ Ba ℓp . We set y1i = zi. This defines the first column of the subarray (yni ) of (xn

i ). By
choosing C1 large enough we can assure that (y1i ) is a C1-good sequence.

We pick a2 < 1/4 such that a2 < a1M1/8k1, pick (y2i ), a subsequence of some (xn
i )i, such that this

column is (2M2)-bad, where a1C1 < a2M2/8 and a2M2 > 2. We choose C2 so that (y2i ) is a C2-good
sequence.

If the first N − 1 columns of the subarray have been chosen in the way just described, we choose

0 < aN < min
n=1,...,N−1

{
2−N ,

anMn

4 · 2−Nkn

}
,

then we choose (yNi ), again a subsequence of some column of (xn
i ), which is 2MN -bad where MN satisfies (5).

Finally kN is chosen so that ∥
∑kN

i=1 b
N
i eNi ∥ > 2MN for some (bNi ) ∈ Ba ℓp. This completes the induction. It

is straightforward to check that (2)–(6) are indeed satisfied.

4



3. The proof of the main result

The proof for the spreading model version is quite easy, since we can control the length of the sum we
consider in the Nth column. This enables us to gain control over the behavior of the columns following
the Nth one. Similarly it is straightforward to prove Theorem 1, when we assume additionally that X is
embedded into a space with an unconditional basis. The projection onto the Nth column allows us then to
preserve the badness of the Nth column without disturbances from the other columns. In the general case
we do not know an easy way to similarly gain easy “access” to the Nth column. One step in the proof will be
considerations very similar to the ones employed in the proof of the spreading model case (see Lemma 3.6).

We start with some technical definitions analogous to the ones employed in the proof in the last section.

Definitions 3.1.
Let X be a Banach space.

(i) A sequence (xn) in X is called a uℓp-sequence, if ∥xn∥ ≤ 1 for all n ∈ IN, (xn) converges weakly to
0 and

(8) sup
(
∑∞

n=1
|αn|p)1/p≤1

∥∥∥∥∥
∞∑

n=1

αnxn

∥∥∥∥∥ < ∞ .

(xn) is called C-uℓp-sequence, if one can replace (8) by

(9) sup
(
∑∞

n=1
|αn|p)1/p≤1

∥∥∥∥∥
∞∑

n=1

αnxn

∥∥∥∥∥ ≤ C .

(ii) A sequence (xn) in X is called an M -bad uℓp-sequence for a constant M < ∞, if (xn) is a uℓp-
sequence, and no subsequence of (xn) is an M -uℓp-sequence. Thus for all subsequences (yn) there
exist k ∈ IN and (αn)kn=1 ∈ Ba ℓp with ∥∥∥∥∥

k∑
n=1

αnyn

∥∥∥∥∥ > M .

(iii) An array (xn
i )∞i,n=1 in X is called a bad uℓp-array , if each sequence (xn

i )∞i=1 is an Mn-bad uℓp-
sequence for some constants Mn with Mn → ∞ as n → ∞.

(iv) (yki ) is called a subarray of (xn
i ), if there is a subsequence (nk) of IN such that every sequence

(yki )∞i=1 is a subsequence of (xnk
i )∞i=1.

(v) A bad uℓp-array (xn
i )∞i,n=1 is said to satisfy the ℓp-array procedure, if there exists a subarray (yni ) of

(xn
i ) and there exist (an) ⊆ IR+ with

∑∞
n=1 an ≤ 1 such that the (weakly null) sequence (yi) with

yi :=
∑∞

n=1 any
n
i has no uℓp-subsequence.

An immediate consequence of the definitions are the following observations: A subarray of a bad uℓp-array is
a bad uℓp-array. A bad uℓp-array satisfies the ℓp-array procedure, if and only if it has a subarray satisfying
the ℓp-array procedure. The “global” idea for the proof of Theorem 1 can be summarized as follows:

Lemma 3.2. Let X have property (Sp). Then X has property (USp) if and only if X satisfies the ℓp-array
procedure.

Proof. Clearly if X has property (USp), X does not contain a bad uℓp-array and so the ℓp-array procedure
is satisfied. Let us now assume that X has property (Sp) and satisfies the ℓp-array procedure, but fails
property (USp). Thus X contains a bad uℓp-array. Since X satisfies the ℓp-array procedure, we can find
a sequence (yi) in X (by the method described in the array procedure), which does not admit of a uℓp-
subsequence. Observing that (yi) converges weakly to 0 by the conditions imposed on the an’s, we see that
X fails property (Sp), a contradiction.

The preceding lemma reduces the proof of Theorem 1 to the proof of
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Theorem 2. Every Banach space satisfies the ℓp-array procedure.

The proof of Theorem 2 will be broken up into two major steps. First we show that Theorem 2 is valid
for the special case of C(K)-spaces where K is a countable compact metric space:

Proposition 3.3. Let K be a countable compact metric space. Then C(K) satisfies the ℓp-array procedure.

The second major step is to show that the case of a general Banach space can be reduced to the special
case of Proposition 3.3:

Proposition 3.4. Let (xn
i )∞i,n=1 be a bad uℓp-array in a Banach space X. Then there exist a subarray (yni )

of (xn
i ) and a countable ω∗-compact subset K of BaY ∗, where we set Y = [yni ]∞i,n=1, such that (yni | K) is

a bad uℓp-array in C(K).

Let us observe that Theorem 2 is indeed an easy consequence of the Propositions 3.3 and 3.4. If (xn
i ) is

a bad uℓp-array in X, Proposition 3.4 produces a subarray (yni ) and a countable ω∗-compact metric space
K in BaY ∗ such that (yni | K) is a bad uℓp-array in C(K). Thus there are (an) ⊆ IR+ with

∑∞
n=1 an ≤ 1

so that the sequence (y′i) in C(K) defined by y′i =
∑∞

n=1 any
n
i |K has no uℓp-subsequence. Since K ⊆ BaY ∗

it follows that yi =
∑∞

n=1 any
n
i itself can have no uℓp-subsequence in X. Thus (xn

i ) satisfies the ℓp-array
procedure.

We now present the proof of Proposition 3.3. This follows rather easily by induction from the following
result.

Lemma 3.5. Let (Xn) be a sequence of Banach spaces each satisfying the ℓp-array procedure. Then
(
∑∞

n=1 Xn)c0 satisfies the ℓp-array procedure.

Before we present its proof we need another lemma:

Lemma 3.6. Let (Xn) be a sequence of Banach spaces each satisfying the ℓp-array procedure and let (xn
i )

be a bad uℓp-array in some Banach space. Set X = [xn
i ]∞i,n=1 and suppose that for all m ∈ IN there is a

bounded linear operator Tm : X → Xm with ∥Tm∥ ≤ 1 such that (Tmxm
i )∞i=1 is an m-bad uℓp-sequence in

Xm. Then (xn
i ) satisfies the ℓp-array procedure.

Proof of Lemma 3.6. Let us first consider the (easy) case that there exist an m ∈ IN and a subarray
(yni ) of (xn

i ) such that (Tmyni )i,n is a bad uℓp-array in Xm. Since Xm satisfies the ℓp-array procedure, so
does (Tmyni )i,n. It follows that (yni ) satisfies the ℓp-array procedure. Thus (xn

i ) itself satisfies the ℓp-array
procedure.

Now let us assume that the easy case does not apply. By passing to a subarray, if necessary, we can
then assume that for all m ∈ IN there is an integer Mm such that (Tmxn

i )i is an Mm-uℓp-sequence for all
n ∈ IN. Inductively we will choose (mn) ∈ P∞(IN), a subarray (yni ) = (xmn

i ), an > 0 with
∑∞

n=1 an ≤ 1 and
integers (Nn) such that the following properties hold for all n ∈ IN:

(10) (Tmn(yni ))i is an mn-bad uℓp-sequence in Xmn

(11) (yni )i is an Nn-uℓp-sequence

(12) anmn > n

(13)

n−1∑
j=1

ajNj < anmn/4

(14)

∞∑
j=n+1

ajMmn < anmn/4
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(15)
(
Tmny

ℓ
i

)
i

is an Mmn-uℓp-sequence for all ℓ .

Let us note that (10) is automatically fulfilled because of the hypotheses; (15) holds because of our assumption
above.

We start the induction as follows. Let a1 = 1/2; choose m1 such that a1m1 > 1 (thus (12) is satisfied
for n=1). Since (y1i )i := (xm1

i )i is a uℓp-sequence, we can choose an N1 so that (11) holds. If we require for
future aj ’s that

ajMm1 < 2−ja1m1/4 for all j > 1 ,

condition (14) will hold for n=1. The condition (13) does not apply for n = 1.
Now let n > 1 and suppose that (aj)

n−1
j=1 , (mj)

n−1
j=1 and (Nj)

n−1
j=1 have been chosen such that (11)–(13)

hold for n− 1 and additionally for all 2 ≤ j < n

0 < aj < min

{
2−j , 2−j akmk

4 Mmk

: 1 ≤ k < j

}
Choose an such that

0 < an < min

{
2−n, 2−n akmk

4 Mmk

: 1 ≤ k < n

}
.

Then choose mn large enough to satisfy (12) and (13). This defines (yni )i = (xmn
i )i. Next choose Nn so that

(11) is fulfilled. The induction is complete. Because of the conditions imposed on the an’s, (14) holds for all
n ∈ IN and

∑
an ≤ 1.

We set yk =
∑∞

j=1 ajy
j
k. Let (yki) be a subsequence of (yk). We have to show that (yki) is not a

uℓp-sequence, i.e.,

sup
ℓ∈IN

sup
(αi)∈Ba ℓ

(ℓ)
p

∥∥∥∥∥
ℓ∑

i=1

αiyki

∥∥∥∥∥ = ∞ .

To this end fix n and choose — using (10) — k ∈ IN and (βi) ∈ Ba ℓp such that∥∥∥∥∥
k∑

i=1

Tmn

(
βiy

n
ki

)∥∥∥∥∥ > mn .

We obtain the following estimate:∥∥∥∥∥
k∑

i=1

βiyki

∥∥∥∥∥ =

∥∥∥∥∥∥
k∑

i=1

∞∑
j=1

βiajy
j
ki

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
k∑

i=1

∞∑
j=n

Tmn

(
βiajy

j
ki

)∥∥∥∥∥∥−
∥∥∥∥∥∥

k∑
i=1

n−1∑
j=1

βiajy
j
ki

∥∥∥∥∥∥
≥

an

∥∥∥∥∥
k∑

i=1

Tmn

(
βiy

n
ki

)∥∥∥∥∥−
∞∑

j=n+1

aj

∥∥∥∥∥
k∑

i=1

Tmn

(
βiy

j
ki

)∥∥∥∥∥
−

n−1∑
j=1

aj

∥∥∥∥∥
k∑

i=1

βiy
j
ki

∥∥∥∥∥
≥ anmn −

∞∑
j=n+1

ajMmn −
n−1∑
j=1

ajNj by using (10), (15) and (11) resp.

≥ anmn − anmn/4 − anmn/4 by (13) and (14)

= anmn/2 .
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By (12) anmn → ∞ as n → ∞ and the proof is complete.

Proof of Lemma 3.5. Let (xn
i ) be a bad uℓp-array in X = (

∑
Xn)c0 . We denote by Rm the natural projections

Rm : X → Xm. Lemma 3.5 is an easy consequence of the following claim:

For all M < ∞ there are n,m ∈ IN and a subsequence (yi) of (xn
i ) such that (Rmyi)i is

an M -bad uℓp-sequence.

Assume the claim is false. Thus we can find M < ∞ such that for all m,n ∈ IN every subsequence of (xn
i )∞i=1

contains a further subsequence (yi) such that (Rmyi)i is an M -uℓp-sequence. Fix n such that (xn
i ) is an

(M + 3)-bad uℓp-sequence . We can find a subsequence (yi) of (xn
i ) and (mi) ∈ P∞(IN) such that for all

i ∈ IN

(16) sup
m>mi

∥Rmyi∥ ≤ i−1

(17) (Rmyj)
∞
j=i+1 is an M -uℓp-sequence for all m ≤ mi .

Indeed, set y1 = xn
1 and choose m1(= 1) such that ∥Rmy1∥ ≤ 1 for all m > m1. Now pass to a subsequence

(y1; i)
∞
i=1 of (xn

i )∞i=2 such that (Rmy1; j)
∞
j=1 is an M -uℓp-sequence for all m ≤ m1. Set y2 = y1; 1. Choose

m2 such that ∥Rmy2∥ ≤ 2−1 for m > m2. Again by our assumption, we can find a subsequence (y2; i)
∞
i=1

of (y1; i)
∞
i=2 such that (Rmy2; j)

∞
j=1 is an M -uℓp-sequence for all m ≤ m2. Set y3 = y2; 1 and continue in the

obvious fashion. The sequence (yi) we have constructed clearly satisfies (16) and (17).
Since (xn

i ) is an (M + 3)-bad uℓp-sequence , we can find (αj) ∈ Ba ℓp with

(18)

∥∥∥∥∥∥
∞∑
j=1

αjyj

∥∥∥∥∥∥ > M + 3 .

On the other hand, by (16) and (17) we obtain the following estimate for i ∈ IN and m ∈ (mi−1,mi] (where
m0 := 0) : ∥∥∥∥∥∥

∞∑
j=1

Rm(αjyj)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
i−1∑
j=1

Rm(αjyj)

∥∥∥∥∥∥+ ∥Rm(αiyi)∥ +

∥∥∥∥∥∥
∞∑

j=i+1

Rm(αjyj)

∥∥∥∥∥∥
≤ (i− 1) · (i− 1)−1 + 1 + M = M + 2 .

Thus we obtain that ∥∥∥∥∥∥
∞∑
j=1

αjyj

∥∥∥∥∥∥ = sup
m

∥∥∥∥∥∥Rm

 ∞∑
j=1

αjyj

∥∥∥∥∥∥ ≤ M + 2 ,

which contradicts (18).
The claim allows us to choose integers N(1) < N(2) < . . . and (M(n))∞n=1, and subsequences (yni )∞i=1

of (x
N(n)
i )i, such that

(
RM(n)y

n
i

)
i

is an n-bad uℓp-sequence for all n ∈ IN. We let

Tn = RM(n)| [yri ]∞i,r=1

and apply Lemma 3.6. This finishes the proof.

Proof of Proposition 3.3. Recall that for every countable limit ordinal α we can find a sequence of ordinals
βn < α, βn ↗ α such that C(α) is isomorphic to (

∑
C(βn))c0 . Using induction and Lemma 3.5 we obtain

that all C(α)-spaces, where α is a countable limit ordinal, satisfy the ℓp-array procedure. Thus, in view of the
isomorphic classification of C(K)-spaces for countable compact metric spaces K (see [2]), all C(K)-spaces
for countable compact metric spaces K satisfy the ℓp-array procedure.
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This completes the first major step. In order to complete the proof of Theorem 2 (and thus the proof
of Theorem 1) we have to prove Proposition 3.4.

What is the idea behind its proof? Let (xn
i )∞i,n=1 be the given bad uℓp-array. Let us focus on the

nth column, (xn
i )i. Since (xn

i )∞i=1 is a Mn-bad uℓp-sequence for some constant Mn, we can find for each
subsequence (yi) of (xn

i )∞i=1 integers k1 < k2 < . . . such that ∥
∑∞

i=1 αiyki∥ > Mn for some choice of (αi) with

(
∑∞

i=1 |αi|p)
1/p ≤ 1. This badness can be “witnessed” by a functional f ∈ BaX∗: there is an f ∈ BaX∗ such

that f(
∑∞

i=1 αiyki) > Mn. The countable ω∗-compact metric space K will be formed from a subcollection
of the functionals f , which witness the badness of a subsequence of the n-th column of a subarray (yni ) of
(xn

i ) for some n ∈ IN. While it is not hard to make sure that only countably many functionals are required
to sufficiently witness the badness of the array (xn

i ), major difficulties arise from the restriction that K has
to be ω∗-compact.

The construction of the “right” functionals will be given in the proof of Proposition 3.8. Before we
state this result and present the construction of the subarray (yni ) and K needed for Proposition 3.4 we will
change the shape of the array (xn

i ) to facilitate the quite technical proofs which follow.
Instead of the square array (xn

i )∞i,n=1 we will use its triangulated version (zni )∞i,n=1, where zni = xn
i if

n ≤ i and zni = 0 otherwise. It is easy to see that a square array satisfies the ℓp-array procedure if and only
if its triangulated version does. From now on we will drop the zero-entries and just label (xn

i ) in a triangular
fashion (xn

i )1≤n≤i<∞.
We use the triangular labeling to improve the structure of the given bad uℓp-array (xn

i ) :

Lemma 3.7. A triangular bad uℓp-array (xn
i )n≤i admits a triangular subarray (yni )n≤i, which is a basic se-

quence in its lexicographical order (where i is the first “letter” and n is the second “letter”): y11 , y
1
2 , y

2
2 , y

1
3 , y

2
3 , y

3
3 , y

1
4 , . . . .

Note that we can assume that each column of (xn
i ) is semi-normalized. The proof is then an easy

adaptation of the the proof that a normalized weakly null sequence has a basic subsequence, using each
column of (xn

i ) is weakly null. We leave the details of the proof of this lemma to the reader.
In the sequel we will assume that the given bad uℓp-array (xn

i ) is labeled in a triangular fashion and
that it is a bimonotone basic sequence in its lexicographical order. (Note that we can renorm the underlying
Banach space X, since both properties “being a bad uℓp-array” and “satisfying the ℓp-array procedure” are
invariant under isomorphisms.) We also assume that (xn

i )i is a semi-normalized Mn-bad uℓp-sequence where
Mn → ∞. We will also have occasion to use arrays which are labeled in a trapezoidal manner. For this
purpose we define the index set Tn0 = {(i, n) | n ≤ i and i ≥ n0}

Proposition 3.8. Given n0 ∈ IN and a trapezoidal subarray of (xn
i ) indexed by Tn0 (and again denoted by

(xn
i ) ), there exist (ℓi)

∞
i=n0

∈ P∞(IN) and finite sets F (i, n) ⊆ [−1, 1] for (i, n) ∈ Tn0
such that the following

holds: If yni = xn
ℓi

for (i, n) ∈ Tn0 and if n0 ≤ k1 < k2 < . . . < kq are given such that ∥
∑q

i=1 βiy
no

ki
∥ > Mn0

for some (βi) ∈ Ba ℓp, then there exists an f ∈ 3 BaY ∗ (where Y = [yni ](i,n)∈Tn0
) such that

(19)

q∑
i=1

f(αiy
n0

ki
) > Mn0/4 for some (αi) ∈ Ba ℓp

(20) f(yni ) ∈ F (i, n) for all (i, n) ∈ Tn0

(21) f(yni ) = 0 for all (i, n) ∈ Tn0 with i ̸∈ {k1, k2, . . . , kq} .

We are now able to complete the proof of Theorem 1 “modulo” the proof of Proposition 3.8.

Proof of Proposition 3.4. We will define the subarray (yni )n≤i by a diagonal procedure using Proposition 3.8
repeatedly. First we apply Proposition 3.8 for n0 = 1 and the array (xn

i )n≤i and obtain a certain subarray
(zni )(i,n)∈T1

; we set y11 = z11 . Next we apply the proposition to (zni )(i,n)∈T2
. In return we get a new subarray,

which we denote by (zni )(i,n)∈T2
. The second row of (yni ) is defined by setting y12 = z12 and y22 = z22 .

If the ℓth row of (yni ) has been defined (via the array (zni )(i,n)∈Tℓ
), we apply Proposition 3.8 to the

array (zni )(i,n)∈Tℓ+1
. The first row of the array we obtain will be the (ℓ + 1)st row of (yni ). This completes

the induction. Clearly (yni )n≤i is a subarray of (xn
i )n≤i. Moreover (yni ) in its lexicographical order is a
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subsequence of (xn
i ) in its lexicographical order and thus also bimonotone. Furthermore (yni )i is a subsequence

of (xn
i )i for all n ∈ IN.
The set K is constructed next. Let Y = [yni ]n≤i and m ∈ IN, and define

Km =

{
(k1, k2, . . . , kq) | m ≤ k1 < k2 < . . . < kq,

∥∥∥∥∥
r∑

i=1

αiy
m
ki

∥∥∥∥∥ ≤ Mm for all (αi) ⊆ Ba ℓp for all r < q

and

∥∥∥∥∥
q∑

i=1

αiy
m
ki

∥∥∥∥∥ > Mm for some (αi) ⊆ Ba ℓp.

}

Whenever k⃗ = (k1, . . . , kq) ∈ Km, our application of Proposition 3.8 in the definition of the subarray (yni )
yields a functional f of norm not greater than 3, which is defined on a certain subspace of X, spanned by
some elements of (xn

i ). By first restricting to [(yni )](i,n)∈Tn0
and then extending to Y in a trivial manner,

we may assume that f ∈ 3 BaY ∗ with
∑q

i=1 f(αiy
n
ki) > Mn/4 for some (αi) ∈ Ba ℓp (among its other

properties (20) and (21)). It is here, where we use that (yni ) is a bimonotone basic sequence. We denote the
functional f/3 by fk⃗ and let

Kn = {Q∗
mfk⃗ | m ∈ IN, k⃗ ∈ Kn} .

Here Qm denotes the natural projection of norm 1 from Y onto [yni ]1≤n≤i≤m. Finally we define

K =
∞∪

n=1

Kn ∪ {0} .

Let us first note that (yni |K)n≤i is a bad uℓp-array. Indeed, fix a column n0. By our construction (yn0
i )∞i=1

is an Mn0 -bad uℓp-sequence . Consequently, given a subsequence (yn0

ki
) of (yn0

i ), k⃗ := (k1, . . . , kq) ∈ Kn0 for
some q ∈ IN. By (21) fk⃗ = Q∗

mfk⃗ for m large enough and thus fk⃗ ∈ Kn0 ⊆ K. By (19) we obtain that
(yn0

i |K)∞i=1 is an Mn0/12-bad uℓp-sequence in C(K).
By the construction of K it is obvious that K is a countable subset of BaY ∗. Since Y is separable, K

is ω∗-metrizable. It remains to show that K is ω∗-closed.
Let (gj) ⊆ K and assume that (gj) converges ω∗ to some g ∈ BaY ∗. We have to show that g ∈ K.

Every gj is of the form Q∗
mj

fk⃗j
for some mj ∈ IN and some k⃗j ∈ Knj for some nj ∈ IN. By passing to a

subsequence of the sequence (gj) we can assume that either nj → ∞ as j → ∞, or there is an n ∈ IN such
that nj = n for all j ∈ IN.

Let us first deal with the first alternative. Let ij be the first element of k⃗j . Since ij ≥ nj , ij → ∞ as
j → ∞. Moreover fk⃗j

(yni ) = 0 for all n ≤ i < ij by (21). Thus we obtain that fk⃗j
→ 0 in the ω∗-topology

as j → ∞, i. e. g = 0 ∈ K.
From now on we assume that there is an n ∈ IN such that k⃗j ∈ Kn for all j ∈ IN. Kn is relatively

sequentially compact, if endowed with the relative product topology on {0, 1}IN; thus we can assume, by

passing to a subsequence of (gj) if necessary, that k⃗j → k⃗ for some k⃗ ∈ Kn, the closure of Kn.

We claim that k⃗ is finite. Suppose to the contrary that k⃗ = (ki)
∞
i=1. Since k⃗ ∈ Kn we can find for every

q ∈ IN an element in Kn of the form (k1, . . . , kq, ℓ1, . . . , ℓr). By the definition of Kn,
∥∥∑q

i=1 αiy
n
ki

∥∥ ≤ Mn for
all (αi) ⊆ Ba ℓp. Thus (ynki

)∞i=1 is an Mn-uℓp-sequence, a contradiction to the fact that (yni )∞i=1 is an Mn-bad
uℓp-sequence .

Since BaY ∗ is ω∗-sequentially compact, we may additionally assume that fk⃗j
converges in the ω∗-sense

to some f ∈ BaY ∗. We claim that f ∈ K.
First we observe that Q∗

mf ∈ K for all m ∈ IN. Why? By (20) and (21) the set {Q∗
mfk⃗j

(yni ) | j ∈ IN, 1 ≤

n ≤ i} has only finitely many elements. Since Q∗
mfk⃗j

ω∗

→ Q∗
mf as j → ∞, we obtain that Q∗

mfk⃗j
= Q∗

mf for
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j ∈ IN large enough; in particular Q∗
mf ∈ K. Next let q = max k⃗. Since k⃗j → k⃗ and k⃗ is finite, Q∗

qf = f .
Thus f ∈ K.

We want to show that g ∈ K. By passing to yet another subsequence of the (gj) we can assure that
either mj → ∞ as j → ∞, or there is an m ∈ IN such that mj = m for all j ∈ IN. If the first case occurs
or if m ≥ q in the second case, gj = Q∗

mj
fk⃗j

converges ω∗ to f , hence g = f ∈ K. If on the other hand the

second case applies and m < q, gj = Q∗
mj

fk⃗j
converges ω∗ to Q∗

mf . Since f ∈ K, g = Q∗
mf ∈ K.

The major tool for the construction of the subarray (yni ) in Proposition 3.8 is the next lemma, which is
a variation (and generalization) of a lemma employed by J. Elton in his thesis [6]. It allows us to “almost”
achieve the condition in (21) for one row preceding the ki’s. Its versatility will allow repeated application to
construct the array (yni ) row by row, carefully preserving properties obtained in previous steps.

Lemma 3.9. Let n0 ∈ IN and let (xn
i )(i,n)∈Tn0

be our bad uℓp-array indexed trapezoidally. Let B ⊆
2 BaX∗, C > 0, ε > 0, δ > 0, N ∈ P∞(IN) and n ≥ n0 be given. Then there exists L ∈ P∞(N) such that
if (ℓi)

q
i=0 ⊆ L with n ≤ ℓ0 < ℓ1 < . . . < ℓq is given and if there exists an f ∈ B with

(22)

q∑
j=1

f(αjx
n0

ℓj
) > C for some (αj) with

 q∑
j=1

|αj |p
1/p

≤ δ

then there exists a g ∈ B with

(23)


q∑

j=1

g(βjx
n0

ℓj
) > C for some (βj) with

 q∑
j=1

|βj |p
1/p

≤ δ

and
∣∣g(xm

ℓ0)
∣∣ < ε for 1 ≤ m ≤ n .

Proof. We let

Aq =
{
I = (ℓj)

∞
j=0 ∈ P∞(N) | ℓ0 ≥ n and if there is an f ∈ B satisfying (22),

then there is a g ∈ B satisfying (23)
}
.

Let A =
∩∞

q=1 Aq. Every set Aq (and hence A) is a Ramsey set, since the conditions imposed on I involve
only the first (q + 1) elements in I. By Ramsey theory (see e.g., [14] for a discussion of Ramsey theory) we
can thus find an L ∈ P∞(N) such that either P∞(L) ⊆ A or P∞(L) ⊆ P∞(N) \ A. In the first case the
proof is finished; we show that the second Ramsey alternative leads to a contradiction.

We write L = {ℓ0, ℓ1, . . .}. For fixed q ∈ IN and 1 ≤ r ≤ q we let Lr = {ℓr, ℓq+1, , ℓq+2 . . .}. By our
assumption Lr ̸∈ A, thus Lr ̸∈ Asr for some sr ∈ IN. Consequently there exist (αr

j) with (
∑sr

j=1 |αr
j |p)1/p ≤ δ

and a function fr ∈ B such that

fr

( sr∑
j=1

αr
jx

n0

ℓq+j

)
> C

and whenever g(
∑sr

j=1 βjx
n0

ℓq+j
) > C for some function g ∈ B and some (βj) with (

∑sr
j=1 |βj |p ≤ δ, then∣∣g(xm

ℓr
)
∣∣ ≥ ε for some 1 ≤ m ≤ n.

Let r0 be chosen such that sr0 = min {sr | 1 ≤ r ≤ q}. We obtain for each 1 ≤ r ≤ q

C < fr0

( sr0∑
j=1

αr0
j xn0

ℓq+j

)
= fr0

( sr∑
j=1

αr0
j xn0

ℓq+j

)
,

where we set αr0
j = 0 for sr0 < j ≤ sr. It follows that for each r we can find an 1 ≤ mr ≤ n with∣∣fr0(xmr

ℓr
)
∣∣ ≥ ε.

Now we let q vary. Set gq = fr0 and let g be a ω∗-clusterpoint of {gq}q∈IN. Due to our construction

we can find for each r ∈ IN a column m′
r, 1 ≤ m′

r ≤ n, with |g(x
m′

r

ℓr
)| ≥ ε. Thus one of the sequences

(xm
ℓi

)∞i=1, 1 ≤ m ≤ n, is not weakly null, a contradiction.
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Proof of Proposition 3.8. In preparation for the diagonal procedure which follows we will introduce the
following quantities and sets.

Let ε = min {1,Mn0/4}. Let (bni ) be the biorthogonal functionals associated with the bimonotone basic
sequence (xn

i )(i,n)∈Tn0
in its lexicographical order. For (i, n) ∈ Tn0 we choose (εni ) > 0 such that

(24)

∞∑
i=n0

i∑
n=1

εni ∥bni ∥ < ε .

We fix for each (i, n) ∈ Tn0 a finite εni /2-net in [−1, 1] denoted by Hn
i . Let

B1 := {f ∈ 2BaX∗ | f(xn
i ) ∈ Hn

i for all (i, n) ∈ Tn0}

Let us observe that by (24), whenever we can find a g ∈ BaX∗, (αi) ∈ Ba ℓp, and (ℓi)
∞
i=1, ℓ1 > n0, with

g(
∑∞

n=1 αix
n0

ℓi
) > Mn0 , then there is an f ∈ B1 with f(

∑∞
n=1 αix

n0

ℓi
) > 3

4Mn0 .
Next we choose εm > 0 for m ≥ n0 so that

(25)
∞∑

m=n0

mεm sup {∥bni ∥ | (i, n) ∈ Tn0 , n ≤ m} < ε .

The suprema above are finite, since each of the sequences (xn
i )∞i=1 was assumed to be semi-normalized.

For m ≥ n0 we let Γm be a finite εm-net in the interval (0,M ] and we let ∆m be a set of positive reals
such that the set {δp : δ ∈ ∆m} is a (2−mp)-net for [0, 1], which contains 1. Furthermore we require that
∆m ⊆ ∆m+1 for all m ≥ n0.

We are ready to start the induction. Choose C1 ∈ Γn0
and δ1 ∈ ∆n0

arbitrarily, apply Lemma 3.9
to (B1, εn0 , C1, δ1, n0, IN) and obtain L1

1 ∈ P∞(IN). We pick δ2 ∈ ∆n0 , δ1 ̸= δ2, and apply the lemma to
(B1, εn0 , C1, δ2, n0, L

1
1), obtaining a new infinite subset L1

2. We continue applying Lemma 3.9 successively
until we have exhausted all combinations for which (C, δ) ∈ Γn0 × ∆n0 . If L1 is the last infinite subset of IN
thus obtained, we let ℓ1 = minL1. This defines the first row of the (trapezoidal) subarray (yni ): yjn0

= xj
ℓ1

for 1 ≤ j ≤ n0. We set F (n0, j) = Hj
ℓ1

for 1 ≤ j ≤ n0.

For the second step of the induction we first partition the set B1 into finitely many sets as follows: For
t⃗ = (t1, . . . , tn0) ∈

∏n0

j=1 F (n0, j) we let

B2
t⃗

=
{
f ∈ B1 | f(yjn0

) = tj for all 1 ≤ j ≤ n0

}
.

Similarly to what we did in the first step we apply Lemma 3.9 successively to (B2
t⃗
, εn0+1, C, δ, n0 + 1, ·)

beginning with the infinite set L1, until we have exhausted all combinations (⃗t, C, δ) ∈
∏n0

j=1(F (n0, j) ×
Γn0+1 × ∆n0+1). Let L2 denote the last sequence thus obtained. We choose as ℓ2 an element in L2 with
ℓ2 > ℓ1. This defines the second row of the subarray: yjn0+1 = xj

ℓ2
for 1 ≤ j ≤ n0+1. We set F (n0+1, j) = Hj

ℓ2
for 1 ≤ j ≤ n0 + 1.

For the general induction step let us assume that ℓ1 < ℓ2 < . . . < ℓm and Lm have been found
in the way now described. This defines the first m rows of (yni )(i,n)∈Tn0

. We set F (m′, j) = Hj
ℓm

for

1 ≤ j ≤ m′, where m′ = n0 + m − 1. We partition B1 — as before — into finitely many sets: for
t⃗ = (tni ) ∈

∏
{F (i, n) | (i, n) ∈ Tn0 and i ≤ m′} we let

Bm+1

t⃗
=
{
f ∈ B1 | f(yni ) = tni for all (i, n) ∈ Tn0 with i ≤ m′} .

Now we apply Lemma 3.9, starting with the sequence Lm, successively to (Bm+1

t⃗
, εm′+1, C, δ, m′+1, ·) where

(⃗t, C, δ) ranges over all possible combinations in
∏

(F (i, n) × Γm′+1 × ∆m′+1). If Lm+1 is the last sequence
we obtain, we choose ℓm+1 ∈ Lm+1 with ℓm+1 > ℓm. The induction is complete.

From now on we will identify the functionals f ∈ B1 with their restrictions to Y = [yni ](i,n)∈Tn0
.

The subarray (yni )(i,n)∈Tn0
of (xn

i )(i,n)∈Tn0
has been chosen such that the following holds:
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Lemma 3.10. Let n0 ≤ n < k1 < k2 < . . . < kr be given. If there exists an f ∈ B1 such that∑r
i=1 f(αiy

n0

ki
) > C for some (αi) with (

∑r
i=1 |αi|p)

1/p ≤ δ, δ ∈ ∆n, C ∈ Γn, then there exists g ∈ B1

with

r∑
i=1

g(βiy
n0

ki
) > C for some (βi) with

(
r∑

i=1

|βi|p
)1/p

≤ δ(26)

g(ymi ) = f(ymi ) ∈ F (i,m) for all (i,m) ∈ Tn0 with i < n(27)

|g(ymn )| < εn for all 1 ≤ m ≤ n .(28)

We claim that the proof of Proposition 3.8 is complete, once we prove

Lemma 3.11. Let n0 < k1 < . . . < kq be given. If
∥∥∑q

i=1 αiy
n0

ki

∥∥ > Mn0 for some (αi) with (
∑q

i=1 |αi|p)
1/p ≤

1, then there exists an h ∈ B1 such that

(29)

q∑
i=1

h(γiy
n0

ki
) > Mn0/4 for some (γi) with

(
q∑

i=1

|γi|p
)1/p

≤ 1

(30) h(yni ) = 0 for all n ≥ n0, if i > kq

(31) |h(yni )| < εi for all n ≥ n0, if i ̸∈ {k1, k2, . . . , kq} .

Completion of the proof of Proposition 3.8. Indeed, by perturbing h, we can obtain an f ∈ Y ∗ such that for
(i, n) ∈ Tn0 , f(yni ) = h(yni ) if i ∈ {k1, k2, . . . , kq} and f(yni ) = 0 otherwise. Thus (21) is satisfied. Moreover
it follows that

∑q
i=1 f(γiy

n0

ki
) =

∑q
i=1 h(γiy

n0

ki
) > Mn0/4 and f(yni ) ∈ F (i, n) for all (i, n) ∈ Tn0 . Thus (19)

and (20) hold. By using (25) we can estimate ∥f∥ as follows:

∥f − h∥ ≤
kq∑

i=n0

εi

i∑
n=1

∥∥bnℓi∥∥
≤

∞∑
m=n0

m · εm · sup {∥bni ∥ | (i, n) ∈ Tn0 , n ≤ m}

< ε ≤ 1 .

Since ∥h∥ ≤ 2, we have ∥f∥ ≤ 3. This ends the proof of Proposition 3.8.

Proof of Lemma 3.11. If ∥
∑q

i=1 αiy
n0

ki
∥ > Mn0 for some q ∈ IN, n0 ≤ k1 < . . . < kq and some (αi) with

(
∑q

i=1 |αi|p)
1/p ≤ 1, we can find by our earlier observation a function g ∈ B1 with g(

∑q
i=1 αiy

n0

ki
) > 3

4Mn0 .
We will apply Lemma 3.10 (at most) (kq − n0 + 1) times beginning with the function g and the row

n = n0. We choose Cn0 ∈ Γn0 such that 0 < 3
4Mn0 − Cn0 < εn0 .

If n0 = k1, we set hn0 = g and αi,n0 = αi for 1 ≤ i ≤ q. We set γ1 = α1,n0 , if hn0(α1,n0y
n0
n0

) ≥ 0, and
γ1 = −α1,n0 otherwise. We let βn0 = hn0(γ1y

n0
n0

) and choose a δ1 ∈ ∆n0 such that δp1−2−p ≤
∑q

j=2 |αj,n0 |p ≤
δp1 .

If on the other hand n0 < k1, we apply Lemma 3.10 to g, n0 = n < k1 < . . . < kq, δ = 1 (∈ ∆n0) and
C = Cn0 ∈ Γn0 . Note that C < 3

4Mn0 and that therefore the premise of the lemma is indeed fulfilled. The
application yields a new functional hn0

∈ B1 and a new (αi,n0
)qi=1 ∈ Ba ℓqp with

∑q
i=1 hn0(αi,n0y

n0

ki
) > Cn0

and |hn0(ymn0
)| < εn0 for 1 ≤ m ≤ n0. We let βn0 = 0 and δ1 = 1.
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Let us now assume that s ≥ n0 and we have thus far constructed hs ∈ B1, αi,s for i = 1, . . . , q and
for n0 ≤ r ≤ s, scalars Cr ∈ Γr, δr ∈ ∆r and βr ≥ 0, and furthermore for each 1 ≤ ki ≤ s we have chosen
γi ∈ IR such that the following conditions hold:

(32) 0 < (Cr−1 − βr−1) − Cr < εr for all n0 ≤ r ≤ s

(33)

( ∑
{i|ki>r}

|αi,r|p
)1/p

≤ δj for all n0 ≤ r ≤ s with kj ≤ r < kj+1

(34) δpj − 2−jp ≤
q∑

i=j+1

|αi,kj |p for all n0 ≤ kj ≤ s

(35)
∑

{i|ki≥s}

hs(αi,sy
n0

ki
) > Cs

(36) βr = hs(γiy
n0

ki
) if r = ki for some 1 ≤ i ≤ q , and βr = 0 otherwise

(37) |hs(y
m
r )| < εr for all 1 ≤ m ≤ r ≤ s with r ̸∈ {k1, k2, . . . , kq} .

Let us observe that all these conditions are satisfied for s = n0, if we let Cn0−1 = 3
4Mn0 , βn0−1 = 0, k0 = n0

and δ0 = 1. (We also set αi,n0−1 = αi for 1 ≤ i ≤ q.)
Next we choose Cs+1 ∈ Γs+1 with 0 < (Cs − βs) − Cs+1 < εs+1 to satisfy (32) for s + 1. Note that

Cs+1 < Cs. (If Cs − βs < εs+1, we quit the procedure and set h = Q∗
shs. Estimates below will show that h

satisfies the conclusion of Lemma 3.11. We set γj = 0 for kj > s.)
If s + 1 = kj for some 1 ≤ j ≤ q we set hs+1 = hs and αi,s+1 = αi,s for 1 ≤ i ≤ q. We set γj = ±αj,s+1

so that βs+1 := hs+1(γjy
n0

kj
) ≥ 0 and choose δj ∈ ∆s+1 so that (33) and (34) are satisfied for s + 1. (36)

is satisfied for s + 1 by our construction; in (37) no new condition is imposed, so it remains to check (35).
Indeed we have∑

{i|ki≥s+1}

hs+1(αi,s+1y
n0

ki
) =

∑
{i|ki≥s+1}

hs(αi,sy
n0

ki
)

≥
∑

{i|ki≥s}

hs(αi,sy
n0

ki
) − βs by (36)

> Cs − βs > Cs+1 using (35) for r = s and (32) for r = s + 1 .

If s + 1 ̸∈ {k1, k2, . . . , kq}, say kj−1 < s + 1 < kj for some j, we apply Lemma 3.10 to hs, n = s + 1 <
kj < . . . < kq, Cs+1, δj−1 and (αi,s), j ≤ i ≤ q. Let us check that the lemma applies for these parameters:
Clearly Cs+1 ∈ Γs+1 and δj−1 ∈ ∆s ⊆ ∆s+1. Moreover

 q∑
i=j

|αi,s|p
1/p

=

 ∑
{i|ki>s}

|αi,s|p
1/p

≤ δj−1 by (33).

Finally, as above, we obtain

q∑
i=j

hs(αi,sy
n0

ki
) =

∑
{i|ki≥s+1}

hs(αi,sy
n0

ki
) > Cs+1 .

14



The application of Lemma 3.10 yields a new functional hs+1 ∈ B1, and new (αi,s+1) for j ≤ i ≤ q with
(
∑q

i=j |αi,s+1|p)1/p ≤ δj−1,
∑q

i=j hs+1(αi,s+1y
n0

ki
) > Cs+1 and

∣∣hs+1(yms+1)
∣∣ < εs+1 for all 1 ≤ m ≤ s + 1;

hence (37) is satisfied for r = s + 1. Since hs+1 preserves the values of hs on the rows prior to the (s + 1)st
row, hs+1 satisfies (37) also for 1 ≤ r ≤ s. We set βs+1 = 0. By our construction (33), (35) and (36) are
satisfied for s + 1; (34) does not impose a new condition.

Unless we stopped the construction earlier, we quit after we have obtained hkq and let h = Q∗
kq
hkq .

Observing that the conclusions (30) and (31) in Lemma 3.11 hold, it remains to check (29). If h is defined
to be h = Q∗

kq
hkq we obtain

q∑
i=1

h(γiy
n0

ki
) =

q∑
i=1

βki by (36)

= βkq
+

kq∑
r=n0

βr−1

≥ βkq +

kq∑
r=n0

(Cr−1 − Cr − εr)

≥ (βkq − Ckq ) + 3
4Mn0 −

kq∑
r=n0

εr

≥ 3
4Mn0 − ε ≥ 1

2Mn0 .

(Note that βkq
− Ckq

≥ 0 by (35) and (36).)
A similar estimate holds if h = Q∗

shs for some s < kq:

q∑
i=1

h(γiy
n0

ki
) ≥ βs +

s∑
r=n0

(Cr−1 − Cr − εr)

≥ (βs − Cs) +

(
3
4Mn0 −

s∑
r=n0

εr

)
≥ 3

4Mn0 − ε ≥ 1
2Mn0 .

(This time βs − Cs ≥ −εs+1 by our stopping condition.)
The proof is complete, once we show that (

∑q
j=1 |γj |p)1/p ≤ 2. Indeed, if h = Q∗

kq
hkq , we have for

1 ≤ j < q,

|γj |p = |αj,kj−1|p ≤
q∑

i=j

|αi,kj−1|p −
q∑

i=j+1

|αi,kj |p

≤ δpj−1 − (δpj − 2−jp) by (33) and (34);

|γq|p = |αq,kq−1|p ≤ δpq−1 by (33).

Thus we obtain
q∑

j=1

|γj |p ≤
q−1∑
j=1

(δpj−1 − δpj ) + δpq−1 +

q−1∑
j=1

2−jp

≤ 1 +

q−1∑
j=1

2−jp ≤ 2 .

We obtain the same estimate, if we stopped the procedure before reaching the row kq.
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4. Proofs of the corollaries

Proposition 3.8 can be phrased for a single weakly null sequence as follows:

Corollary 3. Let (xn) be a semi-normalized weakly null sequence in a Banach space X. Assume none of
its subsequences has a C-upper ℓp-estimate. Then there exists a subsequence (yn) ⊆ (xn), such that for all
(mn) ∈ P∞(IN) there are a functional f ∈ Ba([yn]

∗
), an ℓ ∈ IN and (αi)

ℓ
i=1 ∈ Ba ℓp such that

f

(
ℓ∑

i=1

αiymi

)
> C/12

and f(yi) = 0, if i /∈ {m1, . . . ,mℓ} .

C. Schumacher [16] uses this corollary to deduce the following weak-Cauchy criterion for property (Sp),
which is a generalization of an analogous result in the c0-case in [11]:

Proposition 4.1. Let X be a Banach space. The following are equivalent:

(i) X has property (Sp).
(ii) Every weak Cauchy-sequence in X has a subsequence (yn) such that, for some constant C < ∞, all

subsequences (y′n) of (yn) satisfy∥∥∥∥∥
∞∑

n=1

an(y′n − y′n−1)

∥∥∥∥∥ < C for all (an) ∈ Ba ℓp .

(Here y0 = 0.)

Corollary 1 is an easy consequence of this proposition:

Proof of Corollary 1. Let (zn) be a weak Cauchy-sequence in Ba(X/Y ) and let q : X → X/Y denote the
quotient map. By a result of R.H. Lohman [13] we can find a weak Cauchy-sequence (xn) in X such that
its image under q is some subsequence of (zn). Since X has property (Sp), (xn) satisfies the conclusion of
(ii) of Proposition 4.1; so does its image under q, which is still a subsequence of (zn).

Next we present the proof of the second corollary:

Proof of Corollary 2. We will only prove the second statement. The proof of the first statement is quite
similar and will be left to the reader. By Theorem 1 we can find constants Cp and Cq such that every weakly
null sequence in BaX (resp. in BaX∗) admits a subsequence with a Cp-upper ℓp-estimate (resp. Cq-upper
ℓq-estimate). Let (fn) be a normalized weakly null sequence in X∗. By passing to a subsequence we may
assume that (fn) has a Cq-upper ℓq-estimate. We choose a separable subspace Y of X which isometrically
norms all the fn’s and denote by gn the restriction of fn to Y . Using a result due to W.B. Johnson and
H.P. Rosenthal [10], we can find a basic sequence (xn) ⊆ Y with ∥xn∥ ≤ 3 for all n, such that a subsequence
of (gn), which we still denote by (gn), is biorthogonal to (xn). Since ℓ1 does not embed into Y , we can
assume that (xn) is a weak Cauchy sequence. Furthermore, since Y has property (Sp) we may assume, by
passing to a subsequence of (xn), that yn := x2n − x2n−1 has a 6Cp-uℓp-estimate.

We claim that (f2n) has a lower ℓq-estimate. Indeed, let (bn) be given with (
∑∞

n=1 |bn|
q
)
1/q

= 1. Choose

(an) with (
∑∞

n=1 |an|
p
)
1/p

= 1 and
∑∞

n=1 anbn = 1. We obtain the following estimate:

∥∥∥∥∥
∞∑

n=1

bnf2n

∥∥∥∥∥ ≥

(∥∥∥∥∥
∞∑

m=1

amym

∥∥∥∥∥
)−1

·

∣∣∣∣∣
( ∞∑

n=1

bnf2n

)
·

( ∞∑
m=1

amym

)∣∣∣∣∣
≥ (6Cp)

−1 ·

∣∣∣∣∣
∞∑

n=1

anbn

∣∣∣∣∣ = (6Cp)
−1

.
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The projection Q : X∗ −→ [f2n] is defined by Qf =
∑∞

n=1 f(yn)f2n. Note that f is only applied to the
uℓp-sequence (yn) in Y ; thus Q is well defined. It is easy to check that Q is the identity map on [f2n] and
that ∥Q∥ ≤ 6CpC

q.

J. Elton obtained in [6] the following characterization: Let (xn) be a semi-normalized weakly null
sequence in a Banach space without a subsequence equivalent to the unit vector basis of c0. Then (xn)

has a subsequence (yn) such that ∥
∑k

n=1 anyn∥ → ∞ as k → ∞, whenever (an) /∈ c0.
We conclude by showing that an analogous result fails in a strong way for the ℓp-case:

Proposition 4.2. Let 1 < p < ∞. There is a Banach space X with a 1-symmetric basis (en) such that the
following properties hold:

(i) (en) does not have an upper ℓp-estimate.
(ii) There is a sequence (αn) /∈ ℓp such that

∑∞
n=1 anen converges.

Proof. Choose 1 < p0 < p < p1. It is easy to construct a concave increasing function λ : IN → IR+ with
λ(1) = 1, such that both B := {n : λ(n) ≥ n1/p0} and L := {n : λn ≤ n1/p1} are infinite subsets of IN. Let
X be the Lorentz sequence space d(w, 1), where w1 = λ(1) and wn = λ(n) − λ(n − 1) for n > 1. X has a
1-symmetric basis (en) with the property λ(n) = ∥

∑n
i=1 ei∥ (see [12, I, p.120]). Since #B = ∞, (en) does

not have an upper ℓp-estimate. To see (ii) we proceed as follows: we choose an increasing sequence (ℓk) ⊂ L
with

(37) ℓ
1−(p/p1)
k > k2p .

Set m0 = 0, mj =
∑j

k=1 ℓk and Fj = (mj−1,mj ] for j ≥ 1. We consider
∑∞

n=1 anen, where

an = j−2ℓ
−1/p1

j , if n ∈ Fj .

Since ℓj ∈ L, ℓ
−1/p1

j ∥
∑

n∈Fj
en∥ ≤ 1, and hence

∥∥∥∥∥
∞∑

n=1

anen

∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑
j=1

j−2ℓ
−1/p1

j

(∑
n∈Fj

en

)∥∥∥∥∥∥ <
∞∑
j=1

j−2 < ∞ .

On the other hand, for N ∈ IN,

mN∑
n=1

|an|p =
N∑
j=1

ℓj(j
−2ℓ

−1/p1

j )p =
N∑
j=1

ℓ
1−(p/p1)
j j−2p ≥ N by (37) .

Thus (an) /∈ ℓp.
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