Orlicz sequence spaces of Banach-Saks type

By

HELMUT KNAUST*)

We show that in Orlicz sequence spaces of Banach-Saks type p, weakly null sequences admit of p-Hilbertian subsequences.

W. B. Johnson introduced the following notion in [3].

Definition 1. Let 1 . A Banach space has Banach-Saks type <math>p (property (\mathbf{BS}_p) , for short), if every weakly null sequence has a subsequence (x_k) so that for some $C < \infty$

$$\left\| \sum_{k=1}^{n} x_k \right\|_{1} \le C n^{1/p} \quad \text{for all } n \in \mathbb{N}.$$

(Here, $n^{1/\infty} := 1$ for all $n \in \mathbb{N}$.)

The following stronger property was introduced in [4]:

Definition 2. Let $1 . A Banach space has property <math>(S_p)$, if every weakly null sequence has a subsequence (x_k) so that for some $C < \infty$

$$\left\|\sum_{k=1}^n a_k x_k\right\| \leq C \quad \text{for all } n \in \mathbb{N} \text{ and for all scalars } (a_k) \text{ with } \left(\sum_{k=1}^n |a_k|^p\right)^{1/p} \leq 1.$$

(Here, $(\sum |a_k|^{\infty})^{1/\infty} := \max |a_k|$.)

A sequence (x_k) , which is dominated by the unit vector basis of ℓ_p , i.e., which satisfies the estimate in Definition 2, is called *p-Hilbertian*.

It follows from Elton's c_0 -theorem ([1], see also [6], Corollary 4.4) that property (BS_∞) implies property (S_∞) . Moreover, both properties are equivalent to the hereditary Dunford-Pettis property. For $1 , however, the two properties are not equivalent: the Lorentz sequence space <math>d(\mathbf{w}, 1)$, where $\mathbf{w} = (w_i)$ satisfies $\sum_{i=1}^n w_i = n^{1/p}$ for all $n \in \mathbb{N}$, has property (BS_p) , while failing property (S_p) . S. A. Rakov ([7], Theorem 3) proved that property (BS_p) implies property $(S_{p-\varepsilon})$ for all $\varepsilon > 0$.

^{*)} Research partially supported by NSF Grant MCS DMS-8921369.

We can now state our result:

Theorem 3. Let $1 and let <math>h_M$ be an Orlicz sequence space not containing ℓ_1 . Then the following properties are equivalent:

- (a) h_M has property (BS_n).
- (b) The Orlicz function M satisfies:

$$\sup_{0 < s, t \leq 1} \frac{M(st)}{M(s) t^{p}} < \infty.$$

(c) h_M has property (S_n) .

Thus, in this context, Orlicz sequence spaces show the same behavior as the classical ℓ_p spaces.

An Orlicz function $M:[0,\infty)\to [0,\infty)$ is a continuous, non-decreasing and convex function satisfying M(0)=0 and $\lim_{t\to\infty} M(t)=\infty$. We will also assume that M(t) is non-degenerate (M(t)>0 for all t>0). The Orlicz sequence space h_M , with Orlicz function M, is the Banach space consisting of all sequences (a_t) of scalars so that

$$\sum_{k=1}^{\infty} M\left(\frac{|a_k|}{\varrho}\right) < \infty \quad \text{for all } \varrho > 0,$$

equipped with the norm

$$\|(a_k)\|_{h_M} = \inf \left\{ \varrho > 0 \middle| \sum_{k=1}^{\infty} M\left(\frac{|a_k|}{\varrho}\right) \le 1 \right\}.$$

For basic facts about Orlicz sequence spaces we refer the reader to [5]. Let us note that the expression in (b) is related to the question, for what values of p the space ℓ_p embeds into h_M (see [5], Theorem 4.a.9):

$$\alpha_{M} := \sup \left\{ p \middle| \sup_{0 < s, t \le 1} \frac{M(st)}{M(s)t^{p}} < \infty \right\}$$

 $= \min \left\{ p \, | \, \ell_p \text{ is isomorphic to a subspace of } h_M \right\}.$

Our result improves on a result by Rakov ([7], Theorem 5), who showed that

$$\alpha_M = \sup \{ p \mid h_M \text{ has property } (BS_p) \} = \sup \{ p \mid h_M \text{ has property } (S_p) \}.$$

Let us remark that the Orlicz sequence space with an Orlicz function M(t), satisfying $M(t) = -t^p \log t$ for small t, has property $(BS_{p-\epsilon})$ for all $\epsilon > 0$, while it fails property (BS_p) .

Proof of Theorem 3. (c) \Rightarrow (a) is trivial.

(a) \Rightarrow (b): For $k \in \mathbb{N}$ we let α_k be a solution of $k \cdot M(\alpha_k) = 1$. (α_k) is a decreasing sequence of positive reals with $\lim_{k \to \infty} \alpha_k = 0$. α_k has been chosen so that $b^{(k)} = \sum_{i=1}^k \alpha_k e_i$ has norm 1 in h_M . (Here (e_i) denotes the unit vector basis in h_M .)

We consider the sequence $b_m^{(k)} = \sum_{i=1}^k \alpha_k e_{mk+i}$ for $m \in \mathbb{N}$. Since ℓ_1 does not embed into h_M , the sequence $(b_m^{(k)})_{m\in\mathbb{N}}$ is weakly null for all $k\in\mathbb{N}$. It follows from the symmetry of (e_i) and a result by Rakov ([7], see [2], Proposition 3.2), that there is a constant $C < \infty$, independent of k, so that for all $k \in \mathbb{N}$

$$\left\|\sum_{m=1}^n b_m^{(k)}\right\| \le C n^{1/p} \quad \text{for all } n \in \mathbb{N}.$$

Consequently,

$$n \cdot k \cdot M\left(\frac{\alpha_k}{Cn^{1/p}}\right) \leq 1$$
.

Let now 0 < s, $t \le 1$ be given. We choose $k \in \mathbb{N}$ so that $\alpha_{k+1} < s \le \alpha_k$, and $n \in \mathbb{N}$ so that $1/C(n+1)^{1/p} < t \le 1/Cn^{1/p}$. (We may assume that $s \le \alpha_1$ and that $t \le 1/C$, since it suffices to establish (b) for small s and t (see [5], Proposition 4.a.5.).)

We obtain the desired estimate as follows:

$$\frac{M(st)}{M(s)t^{p}} \leq \frac{M\left(\frac{\alpha_{k}}{Cn^{1/p}}\right)}{M(\alpha_{k+1})\left[\frac{1}{C(n+1)^{1/p}}\right]^{p}}$$

$$\leq C^{p} \frac{n+1}{n} \frac{k+1}{k}$$

$$\leq 4 C^{p}.$$

(b) \Rightarrow (c): Let (x_i) be a weakly null sequence in h_M satisfying $||x_i|| \le 1$ for all $i \in \mathbb{N}$. By applying a standard perturbation argument we can assume that $x_i = \sum_{j \in F_i} a_j e_j$ for some finite integer blocks $F_1 < F_2 < \dots$ Since $\|x_i\|_{h_M} \le 1$, $\sum_{j \in F_i} M(|a_j|) \le 1$. By our hypothesis there is a constant C so that

$$\sup_{0 < s, t \le 1} \frac{M(st)}{M(s)t^p} \le C^p.$$

Let (β_i) be given with $\sum |\beta_i|^p \le 1$.

We show that $\left\|\sum_{i=1}^{\infty} \beta_i x_i\right\| \leq C$. Indeed:

$$\begin{split} \sum_{i=1}^{\infty} \sum_{j \in F_i} M\left(\frac{|\beta_i a_j|}{C}\right) &\leq \sum_{i=1}^{\infty} \sum_{j \in F_i} C^p M\left(|a_j|\right) \frac{|\beta_i|^p}{C^p} \\ &\leq \sum_{i=1}^{\infty} |\beta_i|^p \cdot \sum_{j \in F_i} M\left(|a_j|\right) \\ &\leq \sum_{i=1}^{\infty} |\beta_i|^p \leq 1 \,. \end{split}$$

Re mark s. 1. If ℓ_1 embeds into h_M , then $\alpha_M = 1$. Rakov observed in ([8], Remark 6), that in this case either h_M satisfies property (BS $_{\infty}$), and thus property (S $_{\infty}$), or h_M fails property (BS $_p$), and thus property (S $_p$), for all p > 1. Consequently, property (BS $_p$) and property (S $_p$) are equivalent for all Orlicz sequence spaces h_M .

2. We do not know of an example of a Banach space, not containing ℓ_1 , which has property (BS_p) and fails property (S_p) .

References

- J. Elton, Weakly null normalized sequences in Banach spaces. Dissertation, Yale University 1978.
- [2] B. V. Godun and S. A. Rakov, Banach-Saks property and the problem of three spaces. Mat. Zametki 31, 61-74 (1982). English translation in: Math. Notes 31, 32-39 (1982).
- [3] W. B. JOHNSON, On quotients of L_p which are quotients of ℓ_p . Compositio Math. 34, 69–89 (1977).
- [4] H. KNAUST and E. ODELL, Weakly null sequences with upper ℓ_p-estimates. In: E. Odell, H. Rosenthal (eds.), "Functional Analysis, Proceedings, The University of Texas at Austin, 1987–89", 85–107, Berlin-Heidelberg-New York 1991.
- [5] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces I. Berlin-Heidelberg-New York 1977.
- [6] E. ODELL, Applications of Ramsey theorems to Banach space theory. In: H. E. Lacey (ed.), "Notes in Banach Spaces", 379-404, Austin-London 1981.
- [7] S. A. RAKOV, Banach-Saks property of a Banach space. Mat. Zametki 26, 823-834 (1979). English translation in: Math. Notes 26, 909-916 (1979).
- [8] S. A. RAKOV, Banach-Saks exponent of certain Banach spaces of sequences. Mat. Zametki 32, 613-625 (1982). English translation in: Math. Notes 32, 791-797 (1982).

Eingegangen am 29. 7. 1991 *)

Anschrift des Autors:

Helmut Knaust Department of Mathematical Sciences University of Texas at El Paso El Paso, TX 79968 USA

^{*)} Eine Neufassung ging am 15. 11. 1991 ein.