

## Program Assessment Presentation May 15, 2009

Joe Guthrie Helmut Knaust



## • The Three Student Outcomes

The Department of Mathematical Sciences is in agreement that our graduating students should possess the following three competencies:

- 1. Given initial information and data from various domains, students will be able to identify problems, and using appropriate mathematical tools, formulate and solve them.
- 2. Students will be able to understand, create and analyze mathematical proofs.
- 3. Students will be able to communicate mathematics clearly in oral and written form.



• Students Will Be Assessed In Seven Courses

|                                | BS Math | BS Math<br>SecEd | BS Math<br>Stat | BS Math<br>Act. | BS<br>Applied |
|--------------------------------|---------|------------------|-----------------|-----------------|---------------|
| DEGREE PLANS                   |         |                  |                 |                 | Math          |
| Math 2300 - Discrete           |         |                  |                 |                 |               |
| Mathematics                    | С       | С                | С               | С               | 1             |
| Math 2325 - Introduction to    |         |                  |                 |                 |               |
| Higher Mathematics             | С       | С                | С               | С               | 0             |
| Math 3325 - Principles of      |         |                  |                 |                 |               |
| Mathematics                    | 1       | 1                | 1               | 1               | 0             |
| Math 3341 - Introduction to    |         |                  |                 |                 |               |
| Analysis                       | 1       | 1                | 0               | 1               | 0             |
| Math 4303 - Fundamental        |         |                  |                 |                 |               |
| Mathematics from an Advanced   |         |                  |                 |                 |               |
| Standpoint                     | 0       | 1                | 0               | 0               | 0             |
| Math 4329 - Numerical Analysis | е       | е                | 1               | 1               | 1             |
| Stat 4380 - Statistics I       | е       | 1                | 1               | 1               | 1             |

- 1: Required course
- c: Students take Math 2300 or Math 2325
- e: Elective
- 0: Not required



## Competency Maps

| COURSES   | BS Math             | BS Math SecEd       | BS Math Stat        | BS Math Act.        | BS<br>Applied |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------|
| Outcome 1 | 2300 or 2325        | 2300 or 2325        | 2300 or 2325        | 2300 or 2325        | 2300          |
|           |                     | 4303                |                     |                     |               |
|           | 4329*               | 4329*               | 4329                | 4329                | 4329          |
|           | 4380*               | 4380*               | 4380                | 4380                | 4380          |
| Outcome 2 | 2300 or 2325        | 2300 or 2325        | 2300 or 2325        | 2300 or 2325        | 2300          |
|           | 3325                | 3325                | 3325                | 3325                |               |
|           | 3341                | 3341                |                     | 3341                |               |
|           |                     | 4303                |                     |                     |               |
| Outcome 3 | 2300 or <b>2325</b> | 2300 or <b>2325</b> | 2300 or <b>2325</b> | 2300 or <b>2325</b> | 2300          |
|           | 3325                | 3325                | 3325                | 3325                |               |
|           | 3341                | 3341                |                     | 3341                |               |
|           |                     | 4303                |                     |                     |               |

**bold:** major coverage *italic*: minor coverage \* elective



Department of Mathematical Sciences The University of Texas at El Paso

### Assessment of Student Outcomes

| Outcomes | Where                                                         | Tool                                                                         | When                                                                       | Who                  | Analyses                                                                | Review                                                                                                                                 | Implementati                                                                                            |                                       |
|----------|---------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|
|          |                                                               |                                                                              |                                                                            |                      |                                                                         |                                                                                                                                        | on                                                                                                      |                                       |
| 1        | MATH 2300<br>MATH 2325<br>MATH 4329<br>STAT 4380              | Final exam<br>questions<br>and/or lab<br>reports                             | Every spring semester                                                      | Course<br>instructor | Ad-hoc course<br>committee,<br>annually after<br>the spring<br>semester | Program<br>Assessment<br>Committee<br>(Guthrie,<br>Knaust)<br>reviews<br>results and<br>presents<br>annual<br>report to<br>the faculty | Program<br>Assessment                                                                                   | Changes<br>approved by<br>the faculty |
| 2        | MATH 2300<br>MATH 2325<br>MATH 3325<br>MATH 3341<br>MATH 4303 | Final exam<br>questions<br>and/or lab<br>reports                             | Every spring<br>semester,<br>except for<br>Math 4303<br>(fall<br>semester) | Course<br>instructor | Ad-hoc course<br>committee,<br>annually after<br>the spring<br>semester |                                                                                                                                        | will be<br>implemented<br>and then<br>field tested<br>in the next<br>year.<br>Not<br>applicable<br>yet. |                                       |
| 3        | MATH 2300<br>MATH 2325<br>MATH 3325<br>MATH 3341<br>MATH 4303 | Final exam<br>questions,<br>oral pre-<br>sentation,<br>and/or lab<br>reports | Every spring<br>semester,<br>except for<br>Math 4303<br>(fall<br>semester) | Course<br>instructor | Ad-hoc course<br>committee,<br>annually after<br>the spring<br>semester |                                                                                                                                        |                                                                                                         |                                       |



## • Spring 2009: Assessment in Two Courses

Math 2300 - Discrete Mathematics

- two sections per semester
- mostly mathematics and computer science majors
- also offered at EPCC

Math 3341 - Introduction to Analysis

- two sections this semester
- almost exclusively mathematics majors



#### . Course Goals I: Math 2300 (Discrete Mathematics)

Students are expected to make considerable progress in the following areas:

| # | Course Goal                            | Linked to | Measurement       | Benchmark   |
|---|----------------------------------------|-----------|-------------------|-------------|
|   |                                        | Outcome   | Method            |             |
| 1 | Students will be able to use the basic | 1,2       | Final examination | 67% correct |
|   | algebra of sets and of logic.          |           | questions         |             |
| 2 | Students will be able to identify and  | 1,2       | Final examination | 67% correct |
|   | use common classes of relations        |           | questions         |             |
|   | (reflexive, symmetric, transitive,     |           |                   |             |
|   | antisymmetric; equivalence relations   |           |                   |             |
|   | and partial orders).                   |           |                   |             |
| 3 | Students will be able to carry out     | 1         | Final examination | 80% correct |
|   | basic computations in modular          |           | questions         |             |
|   | arithmetic.                            |           |                   |             |

<sup>11</sup> A student who scores at least the required percentage on the appropriate questions will have met the benchmark for the respective course 7 goal.



#### • Course Goals II: Math 2300 (Discrete Mathematics)

Students are expected to make considerable progress in the following areas:

| # | Course Goal                                   | Linked to | Measurement | Benchmark   |
|---|-----------------------------------------------|-----------|-------------|-------------|
|   |                                               | Outcome   | Method      |             |
| 4 | Students will be able to solve counting       | 1         | Final       | 50% correct |
|   | problems involving combinations and           |           | examination |             |
|   | permutations, including counting              |           | questions   |             |
|   | problems with restrictions, and they will be  |           |             |             |
|   | able to use these skills to compute discrete  |           |             |             |
|   | probability.                                  |           |             |             |
| 5 | Students will know the basic definitions and  | 1         | Final       | 67% correct |
|   | theorems (such as Euler's theorem) of graph   |           | examination |             |
|   | theory, and be able to apply them to specific |           | questions   |             |
|   | graphs.                                       |           |             |             |
| 6 | Students will know the basic algorithms for   | 1         | Final       | 80% correct |
|   | traversing trees, and be able to apply them   |           | examination |             |
|   | to specific trees.                            |           | questions   |             |
| 7 | Students will be able to use induction to     | 2         | Final       | 33% correct |
|   | prove simple summations and inequalities      |           | examination |             |
|   |                                               |           | questions   |             |



## .Course Goals: Math 3341 (Introduction to Analysis)

Students are expected to make considerable progress in the following areas:

| # | Course Goal                                                    | Linked to Outcome |
|---|----------------------------------------------------------------|-------------------|
| 1 | Student will become familiar with the fundamental results of   | 2                 |
|   | "Analysis on the Real Line" (highlights of the course include  |                   |
|   | the Intermediate Value Theorem, the Mean Value Theorem         |                   |
|   | and possibly the Fundamental Theorem of Calculus)              |                   |
| 2 | Students will thoroughly understand the definitions of the     | 2                 |
|   | basic concepts of Analysis such as convergence, continuity,    |                   |
|   | differentiation and integration                                |                   |
| 3 | Students will be able to apply definitions and theorems in     | 2                 |
|   | Analysis                                                       |                   |
| 4 | Students will continue to develop their ability to use the     | 2                 |
|   | method of proof to establish the fundamental results in        |                   |
|   | Analysis                                                       |                   |
| 5 | Students will employ effective strategies to decide the truth  | 2                 |
|   | or falsity of mathematical propositions                        |                   |
| 6 | Students will be able to write down proofs in a clear, concise | 3                 |
|   | manner using correct English and mathematical grammar.         |                   |
| 7 | Students will be able to present and defend a proof to a       | 3                 |
|   | group of their peers.                                          |                   |



# Assessment Procedure: Math 3341 (Introduction to Analysis)

| COURSE OBJECTIVES            | MEASUREMENT METHOD            | BENCHMARK                 |
|------------------------------|-------------------------------|---------------------------|
| (Corresponding course goals) |                               |                           |
| 1. State important           | Embedded final examination    | 80% (4 of 5 correct)      |
| definitions (2)              | questions                     |                           |
| 2. State major theorems (1)  | Embedded final examination    | 66% (2 of 3 correct)      |
|                              | questions                     |                           |
| 3. Use the definitions to    | Embedded final examination    | 50% (1 of 2 essentially   |
| compute a limit and a        | questions                     | correct)                  |
| derivative (2,3)             |                               |                           |
| 4. Show facility with the    | Embedded final examination    | 66% (2 of 3 essentially   |
| following techniques: ε-δ    | questions                     | correct)                  |
| proof, counterexample,       |                               |                           |
| subsequence construction     |                               |                           |
| (2,3,4,5,6)                  |                               |                           |
| 5. Construct and present a   | During class time, using      | 80% on a rubric score     |
| proof to the class (7)       | notes, present at the board   | (Only minor errors in     |
|                              | and defend a solution to an   | notation or presentation. |
|                              | exercise that requires proof. | No errors in logic.)      |



## Assessment Timetable (Spring 2009 - Spring 2010)

• The first round of assessment of the courses has taken place in the Spring semester 2009 with the courses Math 2300 (Discrete Mathematics) and Math 3341 (Introduction to Analysis). Data are being collected by the instructors in each of the class sections of these courses.

• The ad-hoc committees for the two courses will provide the Program Assessment Committee with an analysis of the collected data by the end of June 2009. The Program Assessment Committee will review these reports and present an annual report with recommendations to the faculty at a regularly scheduled faculty meeting in the Fall semester of 2009. Any resulting course, program or assessment modifications will be implemented during the Spring 2010 semester.

• Data will be collected for Math 4303 in Fall 2009, and the remaining courses will be added to the assessment cycle beginning with data collection in the Spring semester of 2010.