Lloyd-Max Quantization Schemes

Helmut Knaust
Department of Mathematical Sciences
The University of Texas at El Paso
El Paso TX 79968-0514
hknaust@utep.edu

January 6, 2011
1. Introduction
2. Basic Quantization Schemes
3. Lloyd-Max Quantization Setup
4. Lloyd-Max Quantization for “Raw” Images
5. Lloyd-Max Quantization for Transformed Images
6. Generalizations
Learning Outcomes:

- Students will reflect on the role of quantization in image compression.
- Students will improve their programming skills.

Prerequisites:
- Multi-variable Calculus
- Some knowledge of wavelet transforms and their use in image compression
- Some minimal statistics knowledge
Learning Outcomes:

- Students will reflect on the role of quantization in image compression.
Learning Outcomes:

- Students will reflect on the role of quantization in image compression.
- Students will improve their programming skills.
Learning Outcomes:

- Students will reflect on the role of quantization in image compression.
- Students will improve their programming skills.

Prerequisites:
Learning Outcomes:
- Students will reflect on the role of quantization in image compression.
- Students will improve their programming skills.

Prerequisites:
- Multi-variable Calculus
Learning Outcomes:
- Students will reflect on the role of quantization in image compression.
- Students will improve their programming skills.

Prerequisites:
- Multi-variable Calculus
- Some knowledge of wavelet transforms and their use in image compression
Learning Outcomes:

- Students will reflect on the role of quantization in image compression.
- Students will improve their programming skills.

Prerequisites:

- Multi-variable Calculus
- Some knowledge of wavelet transforms and their use in image compression
- Some minimal statistics knowledge
Quantization reduces ranges of values in a signal to a single value, thereby reducing entropy.
Quantization reduces ranges of values in a signal to a single value, thereby reducing entropy.

Quantization is an integral part of lossy compression algorithms.
Quantization reduces ranges of values in a signal to a single value, thereby reducing entropy.

Quantization is an integral part of lossy compression algorithms.

Quantization is usually employed after transformation.
The most basic quantization technique is **Thresholding**: Given a signal $\mathbf{x} = (x_i)$ and a single threshold σ, we replace values as follows:

$$q(x_i) = \begin{cases}
0 & \text{if } |x_i| \leq \sigma \\
 x_i & \text{if } |x_i| > \sigma
\end{cases}$$
The thresholding quantization function:

$$q(x)$$

$$x$$
The **Lossy JPEG2000 Quantization Scheme** also has one fixed parameter, τ. After wavelet transformation, a “step” quantization

$$q(x_i) = \text{sgn}(x_i) \cdot \sigma \cdot \left\lfloor \frac{|x_i|}{\sigma} \right\rfloor$$

is applied to each region with a parameter σ determined as follows:

\[
\begin{array}{c|c}
\frac{\tau}{2} & \tau \\
\hline
\tau & 2\tau \\
\end{array}
\]

$n = 1$
The **Lossy JPEG2000 Quantization Scheme** also has one fixed parameter, τ. After wavelet transformation, a “step” quantization

$$q(x_i) = \text{sgn}(x_i) \cdot \sigma \cdot \left\lfloor \frac{|x_i|}{\sigma} \right\rfloor$$

is applied to each region with a parameter σ determined as follows:

$$n = 2$$
The **Lossy JPEG2000 Quantization Scheme** also has one fixed parameter, \(\tau \). After wavelet transformation, a “step” quantization

\[
q(x_i) = \text{sgn}(x_i) \cdot \sigma \cdot \left\lfloor \frac{|x_i|}{\sigma} \right\rfloor
\]

is applied to each region with a parameter \(\sigma \) determined as follows:

\[
\begin{array}{|c|c|c|}
\hline
\tau / 8 & \tau / 4 & \tau / 2 \\
\tau / 4 & \tau / 2 & \tau \\
\tau / 2 & \tau & 2\tau \\
\tau & 2\tau & \\
\hline
\end{array}
\]

\(n = 3 \)
The quantization function for a given region:

\[q(x) \]
For a fixed signal \tilde{x} and a fixed positive integer n, **Lloyd-Max quantization** uses two sets of parameters:

- Bin-boundaries $\tilde{L} = (L_1, L_2, \ldots, L_{n+1})$, with $\min \tilde{x} = L_1 < L_2 < \cdots < L_n < L_{n+1} = 1 + \max \tilde{x}$,
- and replacement values $\tilde{p} = (p_1, p_2, \ldots, p_n)$.

The quantization function replaces the x-values in the bin $[L_j, L_{j+1})$ by the value p_j:

$$q(x_i) = p_j, \text{ when } x_i \in [L_j, L_{j+1})$$
The goal is to choose \(\vec{L} \) and \(\vec{p} \) to minimize the resulting quantization error

\[
E(\vec{L}, \vec{p}) = \sum_{i=1}^{m} |x_i - q(x_i)|^2
\]

This is a classical Calculus problem. Rewriting we obtain:

\[
E(\vec{L}, \vec{p}) = \sum_{j=1}^{n} \sum_{x_i \in [L_j, L_{j+1})} (x_i - p_j)^2
\]
\[E(\vec{L}, \vec{p}) = \sum_{j=1}^{n} \sum_{x_i \in [L_j, L_{j+1})} (x_i - p_j)^2 \]

Since minima will occur only if all partial derivatives are equal to 0, the following conditions need to be satisfied:

\[\frac{\partial E}{\partial p_j} = \sum_{x_i \in [L_j, L_{j+1})} 2(x_i - p_j) = 0 \Rightarrow p_j = \frac{1}{2L_j - 1}(p_j - 1 + p_j) \]

\[\frac{\partial E}{\partial L_j} = 0 \Rightarrow L_j = \frac{1}{2}(p_j - 1 + p_j) \]
\[E(\vec{L}, \vec{p}) = \sum_{j=1}^{n} \sum_{x_i \in [L_j, L_{j+1})} (x_i - p_j)^2 \]

Since minima will occur only if all partial derivatives are equal to 0, the following conditions need to be satisfied:

\[
\frac{\partial E}{\partial p_j} = \sum_{x_i \in [L_j, L_{j+1})} 2(x_i - p_j) = 0 \iff p_j = \frac{\sum x_i \in [L_j, L_{j+1}) x_i}{\# \{i \mid x_i \in [L_j, L_{j+1}) \}} \quad (1)
\]
\[E(\vec{L}, \vec{p}) = \sum_{j=1}^{n} \sum_{x_i \in [L_j, L_{j+1})} (x_i - p_j)^2 \]

Since minima will occur only if all partial derivatives are equal to 0, the following conditions need to be satisfied:

\[\frac{\partial E}{\partial p_j} = 2(x_i - p_j) = 0 \iff p_j = \frac{\sum_{x_i \in [L_j, L_{j+1})} x_i}{\#\{i \mid x_i \in [L_j, L_{j+1})\}} \quad (1) \]

\[\frac{\partial E}{\partial L_j} = 0 \iff L_j = \frac{1}{2}(p_{j-1} + p_j) \quad (2) \]
\[E(\vec{L}, \vec{p}) = \sum_{j=1}^{n} \sum_{x_i \in [L_j, L_{j+1})} (x_i - p_j)^2 \]

Since minima will occur only if all partial derivatives are equal to 0, the following conditions need to be satisfied:

\[\frac{\partial E}{\partial p_j} = \sum_{x_i \in [L_j, L_{j+1})} 2(x_i - p_j) = 0 \iff p_j = \frac{\sum x_i \in [L_j, L_{j+1}) x_i}{\#\{i \mid x_i \in [L_j, L_{j+1})\}} \] \hspace{1cm} (1)

\[\frac{\partial E}{\partial L_j} = 0 \iff L_j = \frac{1}{2}(p_{j-1} + p_j) \] \hspace{1cm} (2)
These equations can usually not be solved explicitly; instead a two-step procedure is used repeatedly until a fixed point has been (nearly?) reached:
These equations can usually not be solved explicitly; instead a two-step procedure is used repeatedly until a fixed point has been (nearly?) reached:

- Equations (1) are used to update the values \vec{p}:

$$p_{j}^{\text{new}} = \text{ave} \{ x_{i} \mid x_{i} \in [L_{j}, L_{j+1}) \}$$
These equations can usually not be solved explicitly; instead a two-step procedure is used repeatedly until a fixed point has been (nearly?) reached:

- Equations (1) are used to update the values \(\vec{p} \):
 \[
 p_j^{\text{new}} = \text{ave} \{ x_i \mid x_i \in [L_j, L_{j+1}) \}
 \]

- Equations (2) then yield new values for \(\vec{L} \):
 \[
 L_j^{\text{new}} = \frac{1}{2} (p_{j-1}^{\text{new}} + p_j^{\text{new}}), \quad j = 2, \ldots, n
 \]

The values for \(L_1 \) and \(L_{n+1} \) are left unchanged.
As an example, we apply the algorithm to a grayscale image, with $n = 32$. The initial bins are chosen at random.

Original image, entropy=7.65
As an example, we apply the algorithm to a grayscale image, with $n = 32$. The initial bins are chosen at random.

21 iterations, entropy=4.75, PSNR 40.7
As an example, we apply the algorithm to a grayscale image, with $n = 32$. The initial bins are chosen at random.

28 iterations, entropy=4.56, PSNR 40.0
Here is the quantization function for the second run:

\[q(x) \]

The diagram shows a step function where the output values increase in discrete steps as the input values increase linearly from 0 to 250.
Quantization applied to “raw” images usually gives bad results in areas of gradual gray-value change (sky, water, etc.):

Original image:
entropy=7.63
Quantization applied to “raw” images usually gives bad results in areas of gradual gray-value change (sky, water, etc.):

$$n = 2^6:$$

10 iterations, entropy=5.53, PSNR 45.1
Quantization applied to “raw” images usually gives bad results in areas of gradual gray-value change (sky, water, etc.):

\[n = 2^5: \]

18 iterations, entropy=4.35, PSNR 38.0
Quantization applied to “raw” images usually gives bad results in areas of gradual gray-value change (sky, water, etc.):

$n = 2^4$:
22 iterations, entropy=3.76, PSNR 34.7
We now compare step quantization to Lloyd-Max quantization for a transformed image:

- We use the CDF97 wavelet transform once.
- For the step quantization we use $\tau = 16$:

Original image (-128): entropy=7.74
We now compare step quantization to Lloyd-Max quantization for a transformed image:

- We use the CDF97 wavelet transform once.
- For the step quantization we use $\tau = 16$:

CDF97-transformed image
We now compare step quantization to Lloyd-Max quantization for a transformed image:

- We use the CDF97 wavelet transform once.
- For the step quantization we use $\tau = 16$:

<table>
<thead>
<tr>
<th>$\tau/2=8$</th>
<th>$\tau=16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau=16$</td>
<td>$2\tau=32$</td>
</tr>
</tbody>
</table>

Step sizes for the quantization
We now compare step quantization to Lloyd-Max quantization for a transformed image:

- We use the CDF97 wavelet transform once.
- For the step quantization we use $\tau = 16$:

Quantized transform: entropy=2.75
We now compare step quantization to Lloyd-Max quantization for a transformed image:

- We use the CDF97 wavelet transform once.
- For the step quantization we use $\tau = 16$:

Reconstructed image: PSNR 32.44
Here is the same example with Lloyd-Max quantization:

Original image (-128): entropy=7.74
Here is the same example with Lloyd-Max quantization:

CDF97-transformed image
Here is the same example with Lloyd-Max quantization:

<table>
<thead>
<tr>
<th>n=24</th>
<th>n=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=11</td>
<td>n=6</td>
</tr>
</tbody>
</table>

Number of bins for the quantization
Here is the same example with Lloyd-Max quantization:

Quantized transform: entropy=3.73
Here is the same example with Lloyd-Max quantization:

Reconstructed image: PSNR=33.44
Why is the entropy comparatively high after LM-quantization? Here are the histograms of the quantized transformed signals:

![Step quantization](image1)

![Lloyd-Max quantization](image2)
Lloyd-Max quantization can be generalized to higher dimensions.

- The bin boundary conditions in Equations (2) now become Voronoi cell conditions.
- The update step given by Equations (1) still remains: The new replacement values are the average of the signal values in the Voronoi cell.
Here is a two-dimensional example:
Any Questions?

Helmut Knaust
hknaust@utep.edu
Any Questions?

Helmut Knaust
hknaust@utep.edu