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A hands-on approach
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My course

I 15 weeks of three 50-minute sessions per week

I Cover material through bi-orthogonal transformations
I Instead of a final exam, there is a group project. Each

group has 2-3 students.
I Pick top 5 projects from a list or come up with an approved

topic

I They have two weeks to research topic, code solution, write
a 5-page summary, present a half-hour power point
presentation.
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The Inspiration

The project is based on the article, Wavelet-based Prediction of
Oil Prices, by Yousefi, Weinreich, and Reinarz (2005).

The authors propose to answer

Question: Are futures markets efficiently priced, and can this
be verified empirically?

They answer this by using wavelets to predict oil prices.
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Background

I Crude Oil trades:
I Spot trades based on immediate delivery (market)
I Future trades based on delivery at some time in the future

(NYMEX).

I Spot prices and futures prices are examples of
time-series, and the authors of the article assume it is a
stationary processe.

I In statistics, signal processing, econometrics and
mathematical finance, a time series is a sequence of data
points, measured at successive times.

I Time series forecasting is the use of a model to predict
future values based on previously observed values, e.g. oil
futures.

I A stationary process is a stochastic process whose joint
probability distribution does not change when shifted in
time or space.
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Actual Problem Yousefi et al Consider

Given the spot prices from the time period Jan. 1986 - Dec.
2003, predict futures prices for 1, 2, 3, and 4 periods.

Method Used for Predicting Prices into the Future:
I Pre-process data
I Decompose the data into 5 levels (iterations) using a

Discrete Wavelet Transform.
I Extend the data 1, 2, 3, or 4 periods.
I Invert using the Inverse Wavelet transform.
I Compare the results to the actual prices and futures vs.

wavelet predictions.
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Pre-processing the data

I Use monthly averages instead of daily averages.

I De-noise the data with Donoho’s Sureshrink (available in
the Matlab Wavelets Toolbox). Also in VanFleet’s book.
(Assumes the noise is Gaussian; in general, it is not.)
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Transforming the data

I In the paper, the authors claim to use the Discrete Wavelet
Transform with various Daubechies filters. They claim D7
worked the best.

I In reality, they must have used the Stationary Wavelet
Transform (SWT) since the lengths of the averages and
differences remained the same after each iteration.
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Wavelet Transformations

I DWTN is the nxn Discrete Haar Wavelet Transform (DWT
or DWT1) matrix

I The filter

h = (h0, h1) =

(√
2

2
,

√
2

2

)

is called the Haar filter. It is a low-pass filter.
I While

g = (g0, g1) =

(√
2

2
,−
√

2
2

)

is the high-pass filter.
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Example Consider a data set of N = 8 consecutive average
monthly spot prices. These can be stored in a vector f.

f =



f1
f2
f3
f4

f5
f6
f7
f8
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DWT8f =

√
2

2



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 1 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1


·



f1
f2
f3
f4

f5
f6
f7
f8
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W8f =

√
2

2



f1 + f2
f3 + f4
f5 + f6
f7 + f8

f2 − f1
f4 − f3
f6 − f5
f8 − f7


The top half, a1, represents the averages and the bottom half is
the differences, d1. Both of length 4.
The process is then repeated only on the average and
difference yielding a2 and d2, each half the length of a1.
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If we use a different filter, say the Daubechies filter of length
4,or D2 (Haar is D1), then the matrix to transform our data
vector, DWT2, becomes:

DWT2 =



h3 h2 h1 h0 0 0 0 0
0 0 h3 h2 h1 h0 0 0
0 0 0 0 h3 h2 h1 h0
h1 h0 0 0 0 0 h3 h2

g3 g2 g1 g0 0 0 0 0
0 0 g3 g2 g1 g0 0 0
0 0 0 0 g3 g2 g1 g0
g1 g0 0 0 0 0 g3 g2
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One choice of low-pass filter for D2 (Daubechies filter of length
4) is

h0 =
1

4
√

2
(1 +

√
3) h1 =

1
4
√

2
(3 +

√
3)

h2 =
1

4
√

2
(3−

√
3) h3 =

1
4
√

2
(1−

√
3)

The corresponding high pass filter is

g = (g0, g1, g2, g3) = (h3,−h2, h1,−h0), so that DWT2 is an
orthogonal wavelet matrix.

The authors experimented with Daubechies filters, and claimed that
D7 (length 14) yielded the best predictions.
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If the Stationary Wavelet Transform is used, then the data is not
down-sampled, meaning the matrix required to process
8-vector f , is 16x8.

SWT16x8 =

 HS

GS


where

HS =

√
2

2



1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1


·
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HSf =

√
2

2



f8 + f1
f1 + f2
f2 + f3
f3 + f4
f4 + f5
f5 + f6
f6 + f7
f7 + f8


and GSf =

√
2

2



−f8 + f1
−f1 + f2
−f2 + f3
−f3 + f4
−f4 + f5
−f5 + f6
−f6 + f7
−f7 + f8


Thus each new average and difference portion has the same
length as the original data set, and after 5 iterations, we have

Tr5(f) = a5 + d5 + d4 + . . . d1
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Extension of the transformed data

I Each of a5, d5, d4, . . . , d1 is of length N = 5.

I The average portion, a5, was extended either 1, 2, 3, or 4
periods(months) using a spline fit to the data.

I The authors believed that the differences or fluctuations in
the data were due to seasonal changes, and therefore
periodic. These data (d1, . . . , d5) were fit with a sine curve,
and then extended the same number of periods as the
averages.
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Inverting the Transform

I We assume that the extended data was inverted using
ISWT in the Wavelets toolbox. This gives us the extended
data.

I This data is now extended 1, 2, 3, or 4 periods into the
future. This may now be compared to the actual price for
that time period.
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Analysis of the Data

I A regression analysis was performed between the actual
vs. predicted data, and between the actual and the futures
prices.

I The authors found that using data samples of length 100 or
greater worked best. Using D7 (14-length Daubechies
filters) worked best, and that the correlation of their data
was typically was much higher than that of the futures. In
fact, projecting 4 months ahead the correlation of the
predicted data to the actual price was .98887 while the
correlation to the futures data was only .773. (Frankly we
are somewhat skeptical of this since we could not replicate
these results...)
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Problems We Encountered with the Paper

I The authors did not mention their assumption that the data
is stationary, nor that they used the Stationary Wavelet
Transform (SWT) . We had to assume this based on the
graphs of their results. Discrete Wavelet Transform(DWT).
Also the figures were mislabeled.

I The SWT requires the length of the signal/data to be
divisible by 2k . Their data is not. Matlab can fill in missing
data, but if that happened, then the results should be
skewed. Also, it should not be possible to perform the SWT
using D7 without serious wrapping issues at the ends (the
end is what we are trying to extrapolate!).

I Neither my students, nor our group at the module writing
workshop, could reproduce what Yousefi et al did, even
with access to the Matlab Wavelets Toolbox. The averages
grew for us, while they did not for the authors.
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Transformed Data from Paper
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What My Students Did
Pre- Processing of Data

The data they used spanned 1986 - 2007. They chose 133 random
(consecutive) samples of fixed length 128.
vspace*.25in They wrote code to de-noise the data using Sureshrink
algorithm. It yielded better results by smoothing out some of the more
extreme market fluctuations.
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What My Students Did

They used the DHWT to decompose the data for 6 iterations.
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What My Students Did

Extension and Processing of Data

The data was then extended.

A spline fit was used on the a5 and a sine fit was used on
d1, . . . , d5. d6 had only two points, so they used a
weighted average to extend it.

Each was extended 4 periods (months), and then
analyzed.
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What My Students Did

Data Tested

They applied this to predict GE Stock Prices, Oil Prices, S
and P 500 Prices, and 10-year notes.

Note: Their best results came with the S and P 500 using
the DHWT.
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What My Students Did

Analysis of Data

They then performed regression analysis by comparing
their results to the market results. Since no one could
replicate the data from the paper, they could not compare
to those derived from the paper.
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What My Students Did

Graphs of regression lines.
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Summary

Possible Project Idea
I Pre-process data by appropriate de-noising
I Decompose the data into 5 levels (iterations) using the

Stationary Discrete Wavelet Transform (SDWT).
I Extend the data 1, 2, 3, or 4 periods.
I Invert using the Inverse SDWT.
I Compare the results to the actual spot prices, and futures

predicted by NYMEX.
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