A Plaidoyer for Boolean Algebra

Helmut Knaust

Department of Mathematical Sciences The University of Texas at El Paso

hknaust@utep.edu

San Diego CA January 11, 2013

I propose that the basics of Boolean Algebra become a part of the standard *Introduction to Proof* course.

 "Sets" and "Logic", the two classical examples in Boolean Algebra, are main topics in an Introduction to Proof course.

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are main topics in an Introduction to Proof course.
- Boolean Algebra provides a manageable and complete example of an axiomatic system.

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are main topics in an Introduction to Proof course.
- Boolean Algebra provides a manageable and complete example of an axiomatic system.
- Boolean Algebra is abstract.

- "Sets" and "Logic", the two classical examples in Boolean Algebra, are main topics in an Introduction to Proof course.
- Boolean Algebra provides a manageable and complete example of an axiomatic system.
- Boolean Algebra is abstract.
- Boolean Algebra levels the playing field students usually have had no prior exposure to Boolean Algebra.

How to integrate Boolean Algebra into the course?

 I use a "Moore-style theorem sequence", leading to the finite version of Marshall Stone's Representation Theorem for Boolean Algebras.

How to integrate Boolean Algebra into the course?

- I use a "Moore-style theorem sequence", leading to the finite version of Marshall Stone's Representation Theorem for Boolean Algebras.
- I do not lecture on Boolean Algebra; instead the problems are part of the written homework assigned throughout the semester.

George Boole (1815–1864)

Edward V. Huntington (1874–1952)

The Axiomatic System

A *Boolean Algebra* is a set \mathcal{B} together with two "connectives" \sqcap and \sqcup satisfying the following properties:

- Closure Laws:
 - If A and B are two elements in \mathcal{B} , then $A \sqcap B$ is also an element in \mathcal{B} .
 - ② If A and B are two elements in \mathcal{B} , then $A \sqcup B$ is also an element in \mathcal{B} .

The Axiomatic System

A *Boolean Algebra* is a set $\mathcal B$ together with two "connectives" \sqcap and \sqcup satisfying the following properties:

Closure Laws:

- If A and B are two elements in \mathcal{B} , then $A \sqcap B$ is also an element in \mathcal{B} .
- 2 If A and B are two elements in \mathcal{B} , then $A \sqcup B$ is also an element in \mathcal{B} .

Commutative Laws:

- \bigcirc $A \sqcap B = B \sqcap A$ for all elements A and B in B.
- $A \sqcup B = B \sqcup A$ for all elements A and B in B.

The Axiomatic System II

Distributive Laws:

- **1** $A \sqcap (B \sqcup C) = (A \sqcap B) \sqcup (A \sqcap C)$ for all elements *A*, *B* and *C* in *B*.
- ② $A \sqcup (B \sqcap C) = (A \sqcup B) \sqcap (A \sqcup C)$ for all elements A, B and C in B.

The Axiomatic System II

Distributive Laws:

- **1** $A \sqcap (B \sqcup C) = (A \sqcap B) \sqcup (A \sqcap C)$ for all elements A, B and C in B.
- 2 $A \sqcup (B \sqcap C) = (A \sqcup B) \sqcap (A \sqcup C)$ for all elements A, B and C in B.

Associative Laws:

- 2 $A \sqcup (B \sqcup C) = (A \sqcup B) \sqcup C$ for all elements A, B and C in B.

The Axiomatic System II

Distributive Laws:

- **1** $A \sqcap (B \sqcup C) = (A \sqcap B) \sqcup (A \sqcap C)$ for all elements A, B and C in B.
- 2 $A \sqcup (B \sqcap C) = (A \sqcup B) \sqcap (A \sqcup C)$ for all elements A, B and C in B.

Associative Laws:

- Note: The Associative Laws can be deduced from the other five Boolean Algebra Laws.

The Axiomatic System III

Identity Laws:

There are elements $N \in \mathcal{B}$ (called the *null element*) and $O \in \mathcal{B}$ (the *one element*) such that

- \bigcirc $A \sqcap N = N$ and $A \sqcap O = A$ for all elements A in \mathcal{B} .
- 2 $A \sqcup O = O$ and $A \sqcup N = A$ for all elements A in B.

The Axiomatic System III

Identity Laws:

There are elements $N \in \mathcal{B}$ (called the *null element*) and $O \in \mathcal{B}$ (the *one element*) such that

- \bigcirc $A \sqcap N = N$ and $A \sqcap O = A$ for all elements A in \mathcal{B} .
- 2 $A \sqcup O = O$ and $A \sqcup N = A$ for all elements A in B.

Complement Law:

For every element A in B there is an element B in B such that $A \sqcap B = N$ and $A \sqcup B = O$.

The two classical examples:

Observation: Let X be an arbitrary set. Then its power set $\mathcal{P}(X)$ with the connectives \cap (in the role of \cap) and \cup (in the role of \cup) forms a Boolean Algebra.

The two classical examples:

- **Observation:** Let X be an arbitrary set. Then its power set $\mathcal{P}(X)$ with the connectives \cap (in the role of \cap) and \cup (in the role of \cup) forms a Boolean Algebra.
- Problem: Show that

$$S_1 = \{P \land \neg P; P, \neg P; P \lor \neg P\}$$

forms a Boolean Algebra (with \land and \lor). S_1 is called the "Boolean Algebra generated by the free statement P".

The two classical examples:

- **Observation:** Let X be an arbitrary set. Then its power set $\mathcal{P}(X)$ with the connectives \cap (in the role of \cap) and \cup (in the role of \cup) forms a Boolean Algebra.
- Problem: Show that

$$\mathcal{S}_1 = \{ P \land \neg P; \ P, \ \neg P; \ P \lor \neg P \}$$

forms a Boolean Algebra (with \land and \lor). S_1 is called the "Boolean Algebra generated by the free statement P".

Problem: Find the Boolean Algebra S_2 generated by two free statements P and Q. How many elements does S_2 have?

A third elementary example:

For a natural number n, let \mathcal{D}_n denote the set of the divisors of n. For example, $\mathcal{D}_{42}=\{1,2,3,6,7,14,21,42\}$ and $\mathcal{D}_{12}=\{1,2,3,4,6,12\}$. For $m,n\in\mathbb{N}$ let $m\sqcap n$ denote the greatest common divisor of n and m, and $m\sqcup n$ their least common multiple. For instance $6\sqcap 4=2$ and $6\sqcup 4=12$. It turns out that \mathcal{D}_{42} with these two operations \sqcap and \sqcup forms a Boolean Algebra, while \mathcal{D}_{12} does **not**.

- **Problem:** Verify the Boolean Algebra Laws for \mathcal{D}_{42} .
- **⑤ Problem:** Show that \mathcal{D}_{12} does not form a Boolean Algebra.
- **9 Problem:** Conjecture for which values of n the set \mathcal{D}_n forms a Boolean Algebra.

The topic of Boolean Algebra can be revisited when the course "covers" partial orders:

Problem: Consider the relation " \leq " on a Boolean Algebra \mathcal{B} defined by

$$A \leq B \Leftrightarrow A \sqcup B = B$$

for $A, B \in \mathcal{B}$. Prove that \leq is reflexive, anti-symmetric and transitive.

9 Problem: Consider the Boolean Algebra S_1 . Draw a *Hasse diagram* for S_1 endowed with the partial order \leq .

The crucial definition needed to lead to the representation theorem for finite Boolean Algebras is the following:

Let $\mathcal B$ be a Boolean Algebra with null-element N, partially ordered by \preceq . We say that $A \in \mathcal B$ is an ATOM of $\mathcal B$ if N is an immediate predecessor of A.

- **9 Problem:** Find all atoms of $\mathcal{P}(\{1,2,3,4\})$.
- **Operation** Problem: Find all atoms of \mathcal{D}_{42} .
- **Problem:** Find a Boolean Algebra with 8 elements that is a subset of $\mathcal{P}(\{1,2,3,4\})$, but **not** the power set of a three-element subset of $\{1,2,3,4\}$, then find its atoms and draw its Hasse diagram.

A sequence of four more problems studying atoms in a Boolean Algebra is needed before students are ready for the "big theorem" at the end of the semester.

Marshall H. Stone (1903–1989)

$$\alpha(B) = \{A \in \mathcal{B} \mid A \leq B \text{ and } A \text{ is an atom of } \mathcal{B}\}.$$

$$\alpha(B) = \{A \in \mathcal{B} \mid A \leq B \text{ and } A \text{ is an atom of } \mathcal{B}\}.$$

② Problem: Show that the function $\alpha: \mathcal{B} \to \mathcal{A}$ is a bijection.

$$\alpha(B) = \{A \in \mathcal{B} \mid A \leq B \text{ and } A \text{ is an atom of } \mathcal{B}\}.$$

- **@ Problem:** Show that the function $\alpha : \mathcal{B} \to \mathcal{A}$ is a bijection.
- **10 Problem:** \mathcal{B} has 2^k elements.

$$\alpha(B) = \{ A \in \mathcal{B} \mid A \leq B \text{ and } A \text{ is an atom of } \mathcal{B} \}.$$

- **@ Problem:** Show that the function $\alpha : \mathcal{B} \to \mathcal{A}$ is a bijection.
- **10 Problem:** \mathcal{B} has 2^k elements.
- **Problem:** Show that the identities $\alpha(B \sqcup B') = \alpha(B) \cup \alpha(B')$ and $\alpha(B \sqcap B') = \alpha(B) \cap \alpha(B')$ hold for all $B, B' \in \mathcal{B}$.
- **10 Problem:** Additionally, $\alpha(N) = \emptyset$ and $\alpha(O)$ is the set of all atoms of \mathcal{B} .

References:

- R.L. Goodstein, *Boolean Algebra*. Dover Pub., 2007.
- Edward V. Huntington, Sets of Independent Postulates for the Algebra of Logic. Transactions of the American Mathematical Society 5 (1904), pp. 288-309.
- Projektgruppe Fernstudium an der Universität Bielefeld, Mathematisches Vorsemester. Springer-Verlag, 1974.
- Marshall H. Stone, The Theory of Representation for Boolean Algebras. Transactions of the American Mathematical Society 40 (1936), pp. 37-111.
- J.E. Whitesitt, Boolean Algebra and Its Applications.
 Dover Pub., 1995

The complete Boolean Algebra theorem sequence is available at helmut.knaust.info/presentations/BA.pdf