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Statements and their logic connectives on the one hand, and sets and set connectives on the other hand
behave somewhat analogously. The English mathematician George Boole (1815–1864) made this idea
precise by describing what he called “algebra of logic”[1]. Today we use the name “Boolean Algebra” in
his honor instead. The axioms below were first formulated [2] by the American mathematician Edward
V. Huntington (1874–1952).

A Boolean Algebra is a set B together with two “connectives” u and t satisfying the following properties:

1. Closure Laws:

(a) If A and B are two elements in B, then A uB is also an element in B.

(b) If A and B are two elements in B, then A tB is also an element in B.

2. Commutative Laws:

(a) A uB = B uA for all elements A and B in B.

(b) A tB = B tA for all elements A and B in B.

3. Distributive Laws:

(a) A u (B t C) = (A uB) t (A u C) for all elements A, B and C in B.

(b) A t (B u C) = (A tB) u (A t C) for all elements A, B and C in B.

4. Identity Laws:

There are elements N ∈ B (called the null-element) and O ∈ B (the one-element) such that

(a) A uN = N and A uO = A for all elements A in B.

(b) A tO = O and A tN = A for all elements A in B.

5. Complement Law:

For every element A in B there is an element B in B such that A uB = N and A tB = O.

6. Associative Laws:1

(a) A u (B u C) = (A uB) u C for all elements A, B and C in B.

(b) A t (B t C) = (A tB) t C for all elements A, B and C in B.

Let X be an arbitrary set. Note that

P(X) = {A | A ⊆ X},

the power set of X, with the connectives ∩ (in the role of u) and ∪ (in the role of t) forms a Boolean
Algebra.

1The Associative Laws can be deduced from the other five Boolean Algebra Laws.



Problem 1 Let X be an arbitrary set. Let A and B be elements in P(X). Show the following

A ∩ (A ∪B) = A.

(Similarly one obtains that A ∪ (A ∩B) = A.)

Problem 2 Let A and B be elements in a Boolean Algebra B. Show:

A u (A tB) = A.

Analogously one can obtain A t (A uB) = A.

Problem 3 Let A be an element in a Boolean Algebra B with null-element N and one-element O. Further-
more let B,C ∈ B such that

A uB = N and A tB = O,

A u C = N and A t C = O.

Show that B = C.

G. Boole

Certain sets of statements with connectives ∧ (in the role of u) and ∨ (in the
role of t) also form Boolean Algebras.

What is meant by “certain” sets of statements? Our task at hand is to identify
what sets of statements correspond to power sets.

Let us consider an example and start with one “generic” statement P . How
many distinct propositional forms can we form involving this statement? A little
bit of reflection will lead us on the following path: Every propositional form has a
truth table, so the number of distinct propositional forms is limited by the number of
distinct truth tables. Since a truth table involving the statement P has two rows, and
since we have two choices for each row entry (T or F), there are at most 4 distinct
truth tables, and therefore there are at most 4 distinct propositional forms. On
the other hand it is easy to see that P , ¬P , P ∨ ¬P and P ∧ ¬P are 4 distinct
propositional forms contained in each Boolean Algebra containing P .

It is now boring to check that the following 4-element set indeed forms a Boolean
Algebra:

S1 = {P ∧ ¬P ; P, ¬P ; P ∨ ¬P}
S1 is called the “Boolean Algebra generated by the free statement P”.

Problem 4 Find the Boolean Algebra S2 generated by two free statements P and Q. How many elements
does S2 have?

For a natural number n, let Dn denote the set of the divisors of n. For example, D42 = {1, 2, 3, 6, 7, 14, 21, 42}
and D12 = {1, 2, 3, 4, 6, 12}. For m,n ∈ N let m u n denote the greatest common divisor of n and m, and
m t n their least common multiple. For instance 6 u 4 = 2 and 6 t 4 = 12. It turns out that D42 with these
two operations u and t forms a Boolean Algebra, while D12 does not.

Problem 5 Verify Boolean Algebra Laws 3, 4 and 5 for D42.

Problem 6 1. Show that D12 does not form a Boolean Algebra.

2. Conjecture for which values of n the set Dn forms a Boolean Algebra.

Every Boolean Algebra is endowed with a partial order:

Problem 7 Consider the relation “�” on a Boolean Algebra B defined by

A � B ⇔ A tB = B

for A,B ∈ B. Prove that � is reflexive, anti-symmetric and transitive.

Problem 8 Show: A � B ⇔ A uB = A for A,B ∈ B.

Problem 9 Draw Hasse diagrams for the Boolean Algebras S1, and S2, respectively, endowed with the
partial order �.
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E.V. Huntington

Let X be a set, partially ordered by �. We say that x ∈ X is an immediate
predecessor of y ∈ X if
(1) x � y, and (2) for all z ∈ X with x � z � y, it follows that z = x or z = y.

Problem 10 Let B be a Boolean Algebra with null-element N , partially ordered
by �. We say that A ∈ B is an atom of B if N is an immediate predecessor of A.

1. Find all atoms of P({1, 2, 3, 4}).

2. Find all atoms of D42.

Problem 11 Find a Boolean Algebra with 8 elements that is a subset of
P({1, 2, 3, 4}), but not the power set of a three-element subset of {1, 2, 3, 4}, then
find its atoms and draw its Hasse diagram.

Problem 12 Assume that B is a Boolean Algebra with finitely many elements.
Show that for every B ∈ B with B 6= N there is an atom A such that A � B.

Problem 13 Let A,B be two elements in a Boolean Algebra. Show the following:
If A uB = N and A � B, then A = N .

Problem 14 Let A1, A2 be two atoms in a finite Boolean Algebra. Show the
following:

1. The least upper bound of the set {A1, A2} is the element A1 tA2.

2. If A1 6= A2, then A1 uA2 = N .

Problem 15 Given an element B in a finite Boolean Algebra B, we let

α(B) = {A ∈ B | A � B and A is an atom of B}.

Let A1 6= A2 be two atoms in B. Show that α(A1 tA2) = {A1, A2}.

In the sequel, you may assume that results corresponding to those proved for two atoms in Problems 14
and 15 also hold for finitely many atoms.

Problem 16 LetB 6= N be an element in a finite Boolean Algebra B, and suppose α(B) = {A1, A2, A3, . . . , Ak}
for some k ∈ N and some atoms A1, A2, A3, . . . , Ak of B. Show:2

B = A1 tA2 tA3 t . . . tAk.

M.H. Stone

The next problem is the finite version of a general representation theorem for
Boolean Algebras [3], proved by the American mathematician Marshall H. Stone
(1903–1989).

Problem 17 Let B be a finite Boolean Algebra with k atoms for some k ∈ N, and
let P(A) denote the power set of the set A of all atoms of B.

1. Show that the function α : B → P(A), defined in Problem 15, is a bijection.
Thus B has 2k elements.

2. Show that the identities α(B tB′) = α(B)∪α(B′) and α(B uB′) = α(B)∩
α(B′) hold for all B,B′ ∈ B.

Additionally, show that α(N) = ∅ and α(O) = A.

2Hint: Expect to use Boolean Algebra Law 5 along the way.
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The result in Problem 17 is no longer true for infinite Boolean Algebras:

Problem 18 1. Let B = {B ∈ P(N) | (B is finite) or (N \ B is finite)}. Show that B is a Boolean
Algebra (with ∪ and ∩).

2. Let A denote the power set of all atoms of B. Show that B is countably infinite, while A is uncountable.
Therefore the function α : B → A, defined in Problem 15, is not a bijection.
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