Wu's Principles: Teaching a Capstone Course for Future High School Teachers

34th Annual NMMATYC Conference at EPCC

Helmut Knaust

Department of Mathematical Sciences The University of Texas at El Paso hknaust@utep.edu

Overview

- Course Design
- Course Design
- Course Contents
- Conceptual Framework
- Wu's Principles

Wu

Hung-Hsi Wu

Professor Emeritus in Mathematics Education UC Berkeley

 The only course in our department taken by future secondary Mathematics teachers that specifically addresses High School Mathematics.

- The only course in our department taken by future secondary Mathematics teachers that specifically addresses High School Mathematics.
- The prerequisite is an Introduction to Proof class.

- The only course in our department taken by future secondary Mathematics teachers that specifically addresses High School Mathematics.
- The prerequisite is an Introduction to Proof class.
- The course is almost exclusively taken by juniors and seniors.

- The only course in our department taken by future secondary Mathematics teachers that specifically addresses High School Mathematics.
- The prerequisite is an Introduction to Proof class.
- The course is almost exclusively taken by juniors and seniors.
- The vast majority of students will be student-teaching within a year.

• The course is offered once a year.

- The course is offered once a year.
- A colleague and I alternate as instructors.

- The course is offered once a year.
- A colleague and I alternate as instructors.
- Enrollment this semester stands at 18 students.

- The course is offered once a year.
- A colleague and I alternate as instructors.
- Enrollment this semester stands at 18 students.
- In the past, we offered the course every semester...

Course Contents

- From the counting numbers to the real numbers
- Complex numbers
- Functions
- Algebra (= Solving Equations)

 Why do we need real numbers? Why are rational numbers not enough?

- Why do we need real numbers? Why are rational numbers not enough?
 - To solve quadratic (polynomial?) equations (one also needs complex numbers for that)

- Why do we need real numbers? Why are rational numbers not enough?
 - To solve quadratic (polynomial?) equations (one also needs complex numbers for that)
 - To be able to take limits → Completeness of the set of real numbers

- Why do we need real numbers? Why are rational numbers not enough?
 - To solve quadratic (polynomial?) equations (one also needs complex numbers for that)
 - To be able to take limits → Completeness of the set of real numbers
 - How to explain completeness in high-school: Real number line

- Why do we need real numbers? Why are rational numbers not enough?
 - To solve quadratic (polynomial?) equations (one also needs complex numbers for that)
 - To be able to take limits → Completeness of the set of real numbers
 - How to explain completeness in high-school: Real number line
- How many ir-rational numbers do you know?

- Why do we need real numbers? Why are rational numbers not enough?
 - To solve quadratic (polynomial?) equations (one also needs complex numbers for that)
 - To be able to take limits → Completeness of the set of real numbers
 - How to explain completeness in high-school: Real number line
- How many ir-rational numbers do you know?
 - Three: $\sqrt{2}$, e, and π .

- Why do we need real numbers? Why are rational numbers not enough?
 - To solve quadratic (polynomial?) equations (one also needs complex numbers for that)
 - To be able to take limits → Completeness of the set of real numbers
 - How to explain completeness in high-school: Real number line
- How many ir-rational numbers do you know?
 - Three: $\sqrt{2}$, e, and π .
 - Cardinality

The Problem

 Many students do not really know school mathematics.

- Many students do not really know school mathematics.
- Many students were "bulimic learners" in high school: Whatever they memorized, they have long forgotten.

The Problem

- Many students do not really know school mathematics.
- Many students were "bulimic learners" in high school: Whatever they memorized, they have long forgotten.
- Students have experienced mathematics mostly as consumers, not as producers.

- Many students do not really know school mathematics.
- Many students were "bulimic learners" in high school: Whatever they memorized, they have long forgotten.
- Students have experienced mathematics mostly as consumers, not as producers.
- The compartmentalized structure of learning in college does not encourage students to see connections.

Precision: Mathematical statements are clear and unambiguous. At any moment, it is clear what is known and what is not known.

- Precision: Mathematical statements are clear and unambiguous. At any moment, it is clear what is known and what is not known.
- Definitions: They are the bedrock of the mathematical structure. They are the platform that supports reasoning. No definitions, no mathematics.

- Precision: Mathematical statements are clear and unambiguous. At any moment, it is clear what is known and what is not known.
- Definitions: They are the bedrock of the mathematical structure. They are the platform that supports reasoning. No definitions, no mathematics.
- Reasoning: The lifeblood of mathematics. The engine that drives problem solving. Its absence is the root cause of teaching—and learning—by rote.

Purposefulness: Mathematics is goal-oriented, and every concept or skill is there for a purpose.

- Purposefulness: Mathematics is goal-oriented, and every concept or skill is there for a purpose.
- **Oherence:** Mathematics is a tapestry in which all the concepts and skills are interwoven. It is all of a piece.

Wu's Principles and Student Beliefs: 1. Precision

 Students make progress during the course in understanding that they need to transition from being "Math learners" to "Math talkers".

Student Group Activity I

Teach a Lesson

Student Group Activity I

- Teach a Lesson
 - Each student group teaches 1–2 sections in the Equations chapter
 - Fellow classmates present homework solutions lesson presenters critique the solutions.
 - Duration: 80 minutes

Student Group Activity I

- Teach a Lesson
 - Each student group teaches 1–2 sections in the Equations chapter
 - Fellow classmates present homework solutions lesson presenters critique the solutions.
 - Duration: 80 minutes
 - Each group needs to complete a trial run with the instructor before teaching the lesson

Student Group Activity II

• Final Presentation & Paper - Some Topics:

Student Group Activity II

- Final Presentation & Paper Some Topics:
 - Countability of algebraic numbers
 - Algebraic numbers form a field
 - Stereographic projection
 - Cardano-Tartaglia method for solving cubic equations (incl. Casus Irreducibilis)
 - An exact formula for sin 1°

Wu's Principles and Student Beliefs: 2. Definitions

Example: Group Activity - From $\mathbb N$ to $\mathbb Z$

Wu's Principles and Student Beliefs: 2. **Definitions**

Example: Group Activity - From $\mathbb N$ to $\mathbb Z$

• Recall that a *relation on a set X* is a subset of the Cartesian product $X \times X$.

We define a relation \sim on $\mathbb{N} \times \mathbb{N}$ as follows:

$$(p,q)\sim (p',q')\Leftrightarrow p+q'=p'+q.$$

Show that \sim is an equivalence relation on $\mathbb{N} \times \mathbb{N}$.

Wu's Principles and Student Beliefs: 2. **Definitions**

Example: Group Activity - From $\mathbb N$ to $\mathbb Z$

• Recall that a *relation on a set X* is a subset of the Cartesian product $X \times X$.

We define a relation \sim on $\mathbb{N} \times \mathbb{N}$ as follows:

$$(p,q)\sim (p',q')\Leftrightarrow p+q'=p'+q.$$

Show that \sim is an equivalence relation on $\mathbb{N} \times \mathbb{N}$.

No student group notices that $X = \mathbb{N} \times \mathbb{N}$...

Wu's Principles and Student Beliefs: 3. Reasoning

 Based on their own HS experience(?), students will not expect mathematical reasoning from their pupils.

Wu's Principles and Student Beliefs:

3. Reasoning

- Based on their own HS experience(?), students will not expect mathematical reasoning from their pupils.
- Students need to understand that reasoning with definitions will be the only way for them to "check" the Mathematics they will be teaching.

• Solve
$$\log_2 x - \log_2 (1 + \sqrt{x}) = -1$$
.

• Solve
$$\log_2 x - \log_2 (1 + \sqrt{x}) = -1$$
.

• Solve
$$\log_2 x - \log_2 (1 + \sqrt{x}) = -1$$
.

• Solve
$$\log_2 x - \log_2 (1 + \sqrt{x}) = -1$$
.

$$\frac{x}{1+\sqrt{x}} = \frac{1}{2}$$

$$2x - 1 = \sqrt{x}$$

•
$$2x - 1 = \sqrt{x}$$

• Solve
$$\log_2 x - \log_2 (1 + \sqrt{x}) = -1$$
.

$$\bullet \log_2 \frac{x}{1 + \sqrt{x}} = -1$$

•
$$2x - 1 = \sqrt{x}$$

$$4x^2 - 4x + 1 = x$$

• Solve
$$\log_2 x - \log_2 (1 + \sqrt{x}) = -1$$
.

$$\bullet \log_2 \frac{x}{1 + \sqrt{x}} = -1$$

$$1 + \frac{x}{1 + \sqrt{x}} = \frac{1}{2}$$

•
$$2x - 1 = \sqrt{x}$$

$$4x^2 - 4x + 1 = x$$

•
$$(4x-1)(x-1)=0$$

• Solve
$$\log_2 x - \log_2 (1 + \sqrt{x}) = -1$$
.

$$\bullet \log_2 \frac{x}{1 + \sqrt{x}} = -1$$

•
$$2x - 1 = \sqrt{x}$$

$$4x^2 - 4x + 1 = x$$

•
$$(4x-1)(x-1)=0$$

Why is x = 1 a solution, while x = 1/4 isn't?

Reasoning

Example: Discussion of a Test Problem (after finishing the Equations chapter)

• Solve $\log_2 x - \log_2 (1 + \sqrt{x}) = -1$.

Reasoning

Example: Discussion of a Test Problem (after finishing the Equations chapter)

• Solve $\log_2 x - \log_2(1 + \sqrt{x}) = -1$. Domain of the equation: \mathbb{R}^+ • Solve $\log_2 x - \log_2(1 + \sqrt{x}) = -1$. Domain of the equation: \mathbb{R}^+

$$\bullet \Leftrightarrow \log_2 \frac{x}{1 + \sqrt{x}} = -1$$

$$\Leftrightarrow 2x - 1 = \sqrt{x}$$

• Solve $\log_2 x - \log_2 (1 + \sqrt{x}) = -1$. Domain of the equation: \mathbb{R}^+

$$\bullet \Leftrightarrow \log_2 \frac{x}{1 + \sqrt{x}} = -1$$

$$\Rightarrow \frac{x}{1+\sqrt{x}} = \frac{1}{2}$$

•
$$\Leftrightarrow 4x^2 - 4x + 1 = x \land 2x - 1 \ge 0$$

• Solve $\log_2 x - \log_2 (1 + \sqrt{x}) = -1$. Domain of the equation: \mathbb{R}^+

$$\bullet \Leftrightarrow \log_2 \frac{x}{1 + \sqrt{x}} = -1$$

$$\Rightarrow \frac{x}{1+\sqrt{x}} = \frac{1}{2}$$

•
$$\Leftrightarrow 4x^2 - 4x + 1 = x \land 2x - 1 \ge 0$$

•
$$\Leftrightarrow (4x-1)(x-1) = 0 \land 2x-1 \ge 0$$

$$\bullet \Leftrightarrow x = 1$$

Wu's Principles and Student Beliefs:

4. Purposefulness

- Intrinsic motivation seems to be a completely new concept to students.
- Their HS and college experience for the most part seem to have been mathematically "purposeless".

Purposefulness

Example: Questions During the Trial Run

Example: Questions During the Trial Run

• What is the purpose of the material you present?

Example: Questions During the Trial Run

- What is the purpose of the material you present?
- Does the material you present tell a story?

Example: Questions During the Trial Run

- What is the purpose of the material you present?
- Does the material you present tell a story?
- Why do you present this example? What purpose does it serve?

Wu's Principles and Student Beliefs: **5. Coherence**

- Students do not seem to have been exposed much to the idea that "Mathematics is a tapestry in which all the concepts and skills are interwoven".
- Mathematics seems to have been taught to them as a collection of more or less unrelated mathematical subjects.

Topic: Algebra

- Being essentially an Algebra course, the course may contribute to the problem.
- The connection between "Modern Algebra" and "HS Algebra" is stressed.

A Link between Complex Numbers and Geometry: Classification of Isometries in the Complex Plane

• Theorem. Let $f: \mathbb{C} \to \mathbb{C}$ be an arbitrary isometry. Then there exist $z_0 \in \mathbb{C}$ and $\theta \in \mathbb{R}$ such that $f(z) = z_0 + ze^{i\theta}$ or $f(z) = z_0 + \overline{z}e^{i\theta}$.

Credits

Matthew Winsor

Heinz Althoff

References

• Hung-Hsi Wu, The Mathematics K-12 Teachers Need to Know.

https://math.berkeley.edu/~wu/ Schoolmathematics1.pdf

- Hung-Hsi Wu, The Mis-Education of Mathematics Teachers. Notices of the AMS 58 (2011).
- Matthew Winsor, One Model of a Capstone Course for Preservice High School Mathematics Teachers. Primus 19 (2009), pp. 510–518.
- Heinz Althoff, Erfahrungen mit zwei Leistungskurs Abituraufgaben. Stochastik in der Schule 16 (1996), pp. 18–26.