Math 4303 Outline: The Set of Quaternions

We saw in an earlier worksheet that a certain set of real 2×2 matrices with the usual matrix addition and multiplication can be identified with the field of complex numbers. The purpose of this outline is to establish that a certain set of complex 2×2 matrices can serve as a model for the set of quaternions. The quaternions form an associative division algebra (a fancy name for a "field" without commutativity of multiplication).

Let

$$\mathbb{H} = \left\{ \begin{pmatrix} w & z \\ -\overline{z} & \overline{w} \end{pmatrix} \mid w, z \in \mathbb{C} \right\}$$

- 1. Show: If A and B are elements in \mathbb{H} , then A + B is an element of \mathbb{H} .
- 2. Show: If A and B are elements in \mathbb{H} , then $A \cdot B$ is an element of \mathbb{H} .
- 3. Show: (1) The determinant of a matrix in \mathbb{H} is a non-negative real number. (2) The zero matrix is the only matrix in \mathbb{H} with determinant 0.
- 4. Check that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{H}$, and show: If $A \in \mathbb{H}$ is not the zero matrix, then A has a multiplicative inverse in \mathbb{H} .
- 5. Let w = a + di and z = b + ci, where $a, b, c, d \in \mathbb{R}$. Find the four matrices $E, I, J, K \in \mathbb{H}$ such that

$$\begin{pmatrix} w & z \\ -\overline{z} & \overline{w} \end{pmatrix} = aE + bI + cJ + dK.$$

Since the four matrices E, I, J, K form a linearly independent set, $\mathbb H$ is a four-dimensional real vector space, and we can write

$$\mathbb{H} = \{aE + bI + cJ + dK \mid a, b, c, d \in \mathbb{R}\}.$$

- 6. Show that \mathbb{H} is not closed under multiplication by a complex scalar. (Thus \mathbb{H} is not a complex vector space.)
- 7. Show that $I \cdot I = J \cdot J = K \cdot K = -E$.
- 8. Show that $J \cdot K = -K \cdot J = I$. Similarly one can show that $I \cdot J = -J \cdot I = K$ and $K \cdot I = -I \cdot K = J$. (Thus matrix multiplication is not commutative in \mathbb{H} .)
- 9. Compute (5E I + 2J + K)(E + 2I 3J K) in two ways: (1) By using the rules in 7. and 8. assuming the distributive law holds, and (2) by computing the matrix product of the two matrices in \mathbb{H} corresponding to the two factors above. (This illustrates the validity of the distributive law for quaternions.)
- 10. Show that $\det(aE + bI + cJ + dK) = a^2 + b^2 + c^2 + d^2$.
- 11. Given a matrix A = aE + bI + cJ + dK, we let $\overline{A} = aE bI cJ dK$. \overline{A} is called the *quaternian conjugate* of A. Show that $A \cdot \overline{A} = \overline{A} \cdot A = \det(A)E$. (It follows that if $\det(A) \neq 0$, then $A^{-1} = \frac{\overline{A}}{\det(A)}$.)

The quaternions were discovered by William Rowan Hamilton in 1843. According to the Theorem of Frobenius, there are only three real vector spaces that form associative division algebras: \mathbb{R} (one-dimensional), \mathbb{C} (two-dimensional), and \mathbb{H} (four-dimensional).

