
Reflective thinking turns experience into insight.
John Maxwell

1 Numbers

In 1879, Gottlob Frege completed the first step of his program to put mathematics
on a solid foundation. His idea was that logic should be the foundation of all
mathematics, and, following Gottfried von Leibniz (1646–1716) and George Boole
(1815–1864), he created a rigorous symbolic language, which he called Begriffs-
schrift, to incorporate all standard principles of logic.

Georg Cantor followed in his footsteps and developed set theory from basic log-
ical principles. In 1888, Richard Dedekind took the next step, and presented a
construction of the real numbers based on set theory.

It should be mentioned that Frege’s program was doomed to fail. Frege’s construc-
tion allowed objects such as “the set of all sets”. Bertrand Russell used this to
construct a paradox: Let E denote the set of all sets which do not contain them-
selves as members. Is E an element of E? It can’t be, because E contains only sets
which are not members of themselves. Can E fail to be an element of E? No, since
if E 6∈ E, then by the definition of the set E, E is contained in E.

Bertrand Russell’s and Alfred Whitehead’s attempts to “fix” these problems in their
monumental Principia Mathematica are generally regarded as artificial and therefore
in violation of the spirit of Frege’s program.

In response, David Hilbert came up with an alternative program: Use axiomatic
systems as the foundation of mathematics together with meta-mathematics. Math-
ematicians “do” mathematics starting from axiomatic systems; meta-mathematics
allows to talk about the process “from the outside” addressing issues such as com-
pleteness1 and consistency2 of a given axiomatic system.

In 1930, Kurt Gödel showed that this approach was equally flawed: It is not possible
to show (within the axiomatic system) that an axiomatic system which incorporates
the arithmetic of natural numbers is complete (or consistent).

1An axiomatic system is complete, if all statements within the axiomatic system can—in
principle—be shown to be true or to be false.

2An axiomatic system is said to be consistent, if the axioms can be shown not to lead to
contradictions.



1.1 The Natural Numbers

Definition. Richard Dedekind started by giving the following definition of the set
of Natural Numbers3:

The natural numbers are a set N containing a special element called 0,
and a function S : N→ N satisfying the following axioms:

(D1) S is injective4.

(D2) S(N) = N \ {0}.5

(D3) If a subset M of N contains 0 and satisfies S(M) ⊆ M , then
M = N.

The function S is called the successor function.

The first two axioms describe the process of counting, the third axiom assures the
Principle of Induction:

Task 1.1
Let P (n) be a predicate with the set of natural numbers as its domain. If

1. P (0) is true, and

2. P (S(n)) is true, whenever P (n) is true,

then P (n) is true for all natural numbers.

3A similar definition of the natural numbers was introduced by Giuseppe Peano in 1889:

The natural numbers are a set N containing a special element called 0, and a function
S : N→ N satisfying the following axioms:

(P1) 0 ∈ N.

(P2) If n ∈ N, then S(n) ∈ N.

(P3) If n ∈ N, then S(n) 6= 0.

(P4) If a set A contains 0, and if A contains S(n), whenever it contains n, then the
set A contains N.

(P5) S(m) = S(n) implies m = n for all m,n ∈ N.

4A function f : A→ B is called injective if for all a1, a2 ∈ A, f(a1) = f(a2) implies a1 = a2.
5For a function f : A→ B, f(A) := {b ∈ B | f(a) = b for some a ∈ A}.
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Arithmetic Properties. Addition of natural numbers is established recursively
in the following way: For a fixed but arbitrary m ∈ N we define

m+ 0 := m

m+ S(n) := S(m+ n) for all n ∈ N

By Axiom (D3), adding n to the fixed m is then defined for all natural numbers n.
It is not clear at this point that the recursive formula defines addition in a unique
way. This will be proved later in Task 1.21.

Task 1.2
If we set S(0) := 1, then S(m) = m+ 1 for all natural numbers m ∈ N.

Use induction for the following:

Task 1.3
Show that addition on N is associative.

Task 1.4
Show that addition on N is commutative.

This last task implies in particular that 0 is the (unique) neutral element with
respect to addition: n+ 0 = 0 + n = n holds for all n ∈ N.

Here is the cancellation law for addition:
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Task 1.5
If m+ k = n+ k, then m = n.

Multiplication of natural numbers is also defined recursively as follows: For a fixed
but arbitrary m ∈ N we define

m · 0 := 0

m · (n+ 1) := m · n+m for all n ∈ N

Task 1.22 will show that this recursive formula defines multiplication in a unique
manner.

Task 1.6
Show that the following distributive law holds for natural numbers:

(m+ n) · k = m · k + n · k.

Task 1.7
Show that 1 is the neutral element with respect to multiplication: For all natural
numbers m,

m · 1 = 1 ·m = m.

Task 1.8
Show that multiplication on N is commutative.
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Task 1.9
Show that multiplication on N is associative.

Task 1.10
Show that multiplication is zero-divisor free:

m · n = 0 implies m = 0 or n = 0.

Finally we can impose a total order6 on N as follows: We say that m ≤ n, if there
is a natural number k, such that m+ k = n.

Show that “≤” is indeed a total order:

Task 1.11
“≤” is reflexive7.

Task 1.12
“≤” is anti-symmetric8.

6A relation ∼ on A is called a total order, if ∼ is reflexive, anti-symmetric, transitive, and has
the property that for all a, b ∈ A, a ∼ b or b ∼ a holds.

7A relation ∼ on A is reflexive if for all a ∈ A, a ∼ a.
8A relation ∼ on A is anti-symmetric if for all a, b ∈ A the following holds: a ∼ b and b ∼ a

implies that a=b.
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Task 1.13
“≤” is transitive9.

Task 1.14
For all m,n ∈ N, m ≤ n or n ≤ m.

Show the following two compatibility laws:

Task 1.15
If m ≤ n, then m+ k ≤ n+ k for all k ∈ N.

Task 1.16
If m ≤ n, then m · k ≤ n · k for all k ∈ N.

Last not least, here is the cancellation law for multiplication:

9A relation ∼ on A is transitive if for all a, b, c ∈ A the following holds: a ∼ b and b ∼ c implies
that a ∼ c.
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Task 1.17
If m · k = n · k, then m = n or k = 0.

Infinite Sets and the Existence of the Set of Natural Numbers. Do natural
numbers exist? Following Dedekind, we will say that a set M is infinite, if there is
an injective map f : M →M that is not surjective10.

Task 1.18
Show that the set of natural numbers as defined on p. 2 is infinite.

Thus, the existence of the set of natural numbers implies the existence of infinite
sets. In fact, we will show that the converse also holds:

Theorem. If there is an infinite set, then there is a model for the natural numbers.

Proof: Let A be an infinite set. Then there is a function S : A→ A that is injective,
but not surjective. Thus we can find an a0 ∈ A with a0 6∈ S(A). Let

K = {B ⊆ A | a0 ∈ B and S(B) ⊆ B}

Note that A ∈ K, so K 6= ∅. We set

N =
⋂
B∈K

B.

Observe that N ∈ K. Indeed, a0 ∈ N , since a0 ∈ B for all B ∈ K. Also

S(N) = S

( ⋂
B∈K

B

)
⊆
⋂
B∈K

S(B) ⊆
⋂
B∈K

B = N.

10A function f : A→ B is called surjective, if f(A) = B.
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By its definition the set N is thus the smallest element of K.

Finally we show that N with the function S : N → N (as successor function) and
a0 (in the role of 0) satisfies Axioms (D1)–(D3).

As the restriction of the injective function S : A→ A to N , the function S : N → N
is also injective. Thus (D1) is satisfied.

For (D2) we have to show that S(N) = N \ {a0}. Since a0 6∈ S(N) and S(N) ⊆ N ,
we obtain that S(N) ⊆ N \ {a0}. For the remaining subset relation suppose to the
contrary that there is a second element missing from the range of N : there is an
element n0 ∈ N satisfying n0 6∈ S(N) and n0 6= a0. Set N0 = N \ {n0}. Note that
a0 ∈ N0 and that S(N0) ⊆ N0. Thus N0 ∈ K. We also know that N0 $ N , yielding
a contradiction.

Now let M ⊆ N , with a0 ∈M , and satisfying S(M) ⊆M . Then M ∈ K, and thus,
again using the minimality of N in K, it follows that M ⊇ N . This proves (D3) and
completes the proof.

Task 1.19
Present the proof of this Theorem.

Recursion and Uniqueness. Before we give a proof of the “essential” uniqueness
of the natural numbers, we will follow Dedekind and establish the following general
Recursion Principle:

Task 1.20
Let A be an arbitrary set, and let a ∈ A and a function f : A → A be given.
Then there exists a unique map ϕ : N→ A satisfying

1. ϕ(0) = a, and

2. ϕ ◦ S = f ◦ ϕ.
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Here is a possible outline for a proof: Consider all subsets K ⊆ N × A with the
following properties:

1. (0, a) ∈ K, and

2. If (n, b) ∈ K, then (S(n), f(b)) ∈ K.

Clearly N× A itself has these properties; we can therefore define the smallest such
set: Let

L =
⋂
{K ⊆ N×A | K satisfies (1) and (2)} .

Now show by induction that for every n ∈ N there is a unique b ∈ A with (n, b) ∈ L.
This property defines ϕ by setting ϕ(n) = b for all n ∈ N.

The Recursion Principle makes it possible to define a recursive procedure (the func-
tion ϕ) via a formula (the function f).

Task 1.21
Define addition of an arbitrary natural number n and the fixed natural number
m using the Recursion Principle.

Task 1.22
Define multiplication of an arbitrary natural number n with the fixed natural
number m using the Recursion Principle.

Use the Recursion Principle to show that the set of natural numbers is unique in
the following sense:

Task 1.23
Suppose that N, S : N → N and 0 satisfy Axioms (D1)–(D3), and that N′,
S′ : N′ → N′ and 0′ satisfy Axioms (D1)–(D3) as well.

Then there is a bijection11ϕ : N→ N′ such that
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1. ϕ(0) = 0′, and

2. ϕ ◦ S = S′ ◦ ϕ.

11A function f : A→ B is a bijection, if it is both injective and surjective.
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1.2 The Integers

Definition. Integers can be written as differences of natural numbers. The set of
integers Z = {0, 1,−1, 2,−2, 3,−3, . . .} will therefore be defined as certain equiva-
lence classes of the two-fold Cartesian product of N.

We define a relation on N× N as follows:

(a, b) ∼ (c, d) if and only if a+ d = b+ c.

The next three tasks show that “∼” defines an equivalence relation on N× N:

Task 1.24
1. “∼” is reflexive.

2. “∼” is symmetric12.

Task 1.25
“∼” is transitive.

We will denote equivalence classes as follows:

(a, b)∼ := {(c, d) | (c, d) ∼ (a, b)}.

The set of integers Z is the set of all equivalence classes obtained in this manner:

Z = {(a, b)∼ | a, b ∈ N}.

Addition of integers will be defined component-wise:

(a, b)∼ + (c, d)∼ = (a+ c, b+ d)∼.

12A relation ∼ on A is called symmetric, if for all a, b ∈ A the following holds: a ∼ b implies
b ∼ a.
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A set G with a binary operation ? is called an Abelian group if ? is commutative
and associative, if (A, ?) has a neutral element n satisfying g ? n = g for all g ∈ G,
and if (A, ?) has inverse elements, i.e., for all g ∈ G there is an h ∈ G satisfying
g ? h = n.

The next five tasks will show that Z is an Abelian group with respect to addition.

Task 1.26
Show that the addition of integers is well-defined (i.e. independent of the chosen
representatives of the equivalence classes).

Task 1.27
Show that the addition of integers is commutative.

Task 1.28
Show that the addition of integers is associative.

Task 1.29
Show that the addition of integers has (0, 0)∼ as its neutral element.

Task 1.30
Show that for all a, b ∈ N the following holds: (a, b)∼ + (b, a)∼ = (0, 0)∼. Thus
every element in Z has an additive inverse element.
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Task 1.31
1. The map φ : N→ Z defined by φ(n) = (n, 0)∼ is injective.

2. For all m,n ∈ N the following holds: φ(m) + φ(n) = φ(m+ n).

From now on we will identify N with φ(N).

Task 1.32
1. Define integer multiplication and show that the multiplication is well-

defined.

2. Show that 1 = (1, 0)∼ is the neutral element with respect to multiplication.

It is not hard to show that multiplication is commutative and associative. Moreover
the distributive law holds in Z.

Task 1.33
With φ as defined in Task 1.31, show that

φ(m) · φ(n) = φ(m · n).

Last not least we will define a relation on Z as follows:

m ≤ n if and only if n+ (−m) ∈ N.
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Task 1.34
Let a, b, c, d ∈ N. Then (a, b)∼ ≤ (c, d)∼ if and only if there is a k ∈ N such that

(a+ k, b) ∼ (c, d).

The next two tasks show that “≤” is a total order on Z:

Task 1.35
Show that “≤” is reflexive, anti-symmetric and transitive on Z.

Task 1.36
m ≤ n or n ≤ m for all m,n ∈ Z.

Task 1.37
If m ≤ n, then m+ k ≤ n+ k for all k ∈ Z.

Task 1.38
If m ≤ n and 0 ≤ k, then m · k ≤ n · k.
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1.3 The Rational Numbers

Once again we define the next larger set as certain equivalence classes. On Z×Z\{0},
we define a relation ∼= as follows:

(a, b) ∼= (c, d) if and only if a · d = b · c.

We write equivalence classes in the familiar way

a

b
= {(c, d) | (c, d) ∼= (a, b)},

and denote the rational numbers by

Q =
{a
b
| a ∈ Z, b ∈ Z \ {0}

}
.

For integers n we write n instead of n
1 .

We define an order on Q as follows:

0 ≤ a

b
if and only if (0 ≤ a and 0 < b) or (a ≤ 0 and b < 0).

For p, q ∈ Q, we write p ≤ q if 0 ≤ q − p.

With the natural addition and multiplication

a

b
+
c

d
=
ad+ bc

bd
, and

a

b
· c
d

=
ac

bd

and the order above, the set of rational numbers becomes an ordered field:

Theorem. (Q,+, ·,≤) has the following properties:

1. (Q,+) is an Abelian group with neutral element 0.

2. (Q \ {0}, ·) is an Abelian group with neutral element 1.

3. (a+ b) · c = a · c+ b · c.

4. (Q,≤) is a total order.

5. (a) a ≤ b implies a+ c ≤ b+ c for all a, b, c ∈ Q.
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(b) a ≤ b implies a · c ≤ b · c for all a, b, c ∈ Q with 0 ≤ c.

Let us write a < b if a ≤ b and a 6= b. We will say that a is positive, if 0 < a.
Similarly, a is called negative, if 0 < −a.

Task 1.39
Let a, b ∈ Q, and assume a > b and b > 0. Then a2 > b2.

Task 1.40
Q is dense in itself : For all a, b ∈ Q with a < b there is a c ∈ Q with a < c < b.
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1.4 The Real Numbers

Completeness. While the rational numbers have nice algebraic properties with
respect to their addition, their multiplication and their order, they have one crucial
deficiency: The set of rational numbers has “holes”.

For instance, the increasing sequence of rational numbers

1, 1.4, 1.41, 1.414, 1.4142, . . .

approaches the non-rational number
√

2, a fact well known since antiquity.

We want to remedy this deficiency by constructing an ordered field F containing
the rational numbers, which is “complete” in the following sense:

(C1) Every increasing bounded sequence of elements in F converges to
an element in F .13

Calculus books usually introduce completeness of the set of real numbers in this
fashion.

It is convenient to describe completeness also in a different way.

We say a non-empty set A ⊆ F is bounded from above, if there is a b ∈ F such that
a ≤ b for all a ∈ A. Such an element b is then called an upper bound for the set A.

If A ⊆ F is bounded from above, we say that A has a least upper bound, denoted
by sup(A) ∈ F , if

1. sup(A) is an upper bound of A, and

2. for all upper bounds b of A, we have sup(A) ≤ b.

Note that sup(A) must be in F , but we do not require that sup(A) is an element of
A.

13A sequence is a function φ : N→ F .
A sequence φ : N→ F is called increasing, if m ≤ n implies φ(m) ≤ φ(n).
An increasing sequence φ : N→ F is called bounded, if there is a b ∈ F such that φ(n) ≤ b for all

n ∈ N.
We say that the increasing sequence φ converges to a ∈ F , if for all ε > 0 there is an N ∈ N such

that a− ε ≤ φ(n) ≤ a for all n ≥ N .
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Task 1.41
Let A = {a ∈ Q | a2 < 2}. Show that A is bounded from above, but fails to
have a least upper bound in Q.

The greatest lower bound of a set is defined analogously:

We say a non-empty set A ⊆ F is bounded from below, if there is a b ∈ F such that
b ≤ a for all a ∈ A. Such an element b is then called a lower bound for the set A.

If A ⊆ F is bounded from below, we say that A has a greatest lower bound, denoted
by inf(A) ∈ F , if

1. inf(A) is a lower bound of A, and

2. for all lower bounds b of A, we have b ≤ inf(A).

Task 1.42
Show the following are equivalent:

1. All subsets of F that are bounded from above have a least upper bound.

2. All subsets of F that are bounded from below have a greatest lower bound.

Completeness can then be stated as follows:

(C2) Every subset A of F , which is bounded from above, has a least
upper bound.
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Task 1.43
Show that property (C2) implies property (C1).

Task 1.44
Show that property (C1) implies property (C2).

Constructions of the real numbers. Historically, three “constructions” of the
real numbers gained prominence in the 19th century, due to Richard Dedekind
(Dedekind cuts), Georg Cantor and Augustin-Louis Cauchy (fundamental
sequences), and Paul Bachmann (nested intervals), respectively. We will present
the first construction below.

Dedekind Cuts. Given two sets of rational numbers ∅ 6= L,U ⊆ Q, we say that
(L,U) is a partition of Q (into two sets), if L ∪ U = Q and L ∩ U = ∅.

A partition (L,U) of Q is called a Dedekind cut, if the following properties hold:

1. If a ∈ L and b ∈ U , then a < b.

2. U has no minimal element.

Here, the element x of a non-empty set A of rational numbers is called minimal
element of A, if x ≤ a for all a ∈ A.

L and U are complementary sets: U = Q \ L, and L = Q \ U .

We say that two Dedekind cuts (L1, U1) and (L2, U2) are equal and write (L1, U1) =
(L2, U2), if U1 = U2 (or equivalently, L1 = L2).

Here are two examples of Dedekind cuts:
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Task 1.45
Show that

L = {q ∈ Q | q ≤ −3}, U = {q ∈ Q | q > −3}

defines a Dedekind cut.

The two sets above “meet” at the rational number −3.

Task 1.46
Show that

L = {q ∈ Q | q ≤ 0 or q2 < 2}, U = {q ∈ Q | q > 0 and q2 > 2}

defines a Dedekind cut.

Here the two sets of the Dedekind cut “meet” at the irrational number
√

2.

Dedekind then defined the set of real numbers to be the set of all Dedekind cuts:

R = {(L,U) | (L,U) is a Dedekind cut}.

Note that the rational number q ∈ Q corresponds to the Dedekind cut, defined by
L = (−∞, q] ∩Q, U = (q,∞) ∩Q. We will denote this Dedekind cut by q.

Addition of Dedekind cuts. Given two Dedekind cuts (L1, U1) and (L2, U2) we
define their sum to be the Dedekind cut (X,Y ), where

Y = {y ∈ Q | y = u1 + u2 for some u1 ∈ U1 and u2 ∈ U2},

and X = Q \ Y.
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Task 1.47
Show that (X,Y ) is indeed a Dedekind cut.

Task 1.48
Let p, q ∈ Q. Show: p+ q = p+ q.

Task 1.49
Show that the Dedekind cuts with the addition defined above form an Abelian
group (see p. 12). What is the neutral element? What is the additive inverse of
a Dedekind cut?

Note that the previous task makes it, in particular, possible to define the difference
of two Dedekind cuts.

Next, we can define an order on Dedekind cuts: We say that (L1, U1) ≤ (L2, U2),
if L1 ⊆ L2. In particular, (L,U) is non-negative, if (−∞, 0] ∩ Q ⊆ L. We say
(L1, U1) < (L2, U2), if (L1, U1) ≤ (L2, U2) and (L1, U1) 6= (L2, U2)

Clearly ≤ is reflexive, anti-symmetric and transitive (why?). The order is also total:

Task 1.50
For any two Dedekind cuts (L1, U1) and (L2, U2),

(L1, U1) ≤ (L2, U2) or (L2, U2) ≤ (L1, U1).
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It is harder to define the multiplication of Dedekind cuts. If both (L1, U1) and
(L2, U2) are non-negative, we define their product (X,Y ) by setting

Y = {y ∈ Q | y = u1 · u2 for some u1 ∈ U1 and u2 ∈ U2},

and X = Q \ Y.

Task 1.51
Check that the product defined above is indeed a Dedekind cut.

To define the product of arbitrary Dedekind cuts, one first needs the following result:

Theorem. Every Dedekind cut is the difference of two non-negative Dedekind
cuts.

The product of two arbitrary Dedekind cuts is then defined by “multiplying out”;
the concept is well-defined.

With these definitions one can show with quite a bit more work:

Theorem. The real numbers with the addition, multiplication and order defined
above form an ordered field.

The Dedekind cut 1 := (Q∩ (−∞, 1],Q∩ (1,∞)) is the neutral element with respect
to multiplication. The existence of a multiplicative inverse is first shown for positive
Dedekind cuts, and then generalized to negative Dedekind cuts.

Completeness of Dedekind cuts. Note that a Dedekind cut (L′, U ′) is an upper
bound for a set of Dedekind cuts D, if L ⊆ L′ for all (L,U) ∈ D.
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Task 1.52
Let

D =

{(
Q ∩ (−∞,− 1

n
],Q ∩ (− 1

n
,∞)

)
| n ∈ N

}
.

Show that D is bounded from above, then determine its least upper bound.

Finally we can show that the set of real numbers defined via Dedekind cuts is
complete:

Task 1.53
Show that R, the set of all Dedekind cuts, satisfies Axiom (C2).

Task 1.54
Show that Q is dense in R: Given two Dedekind cuts (L1, U1) < (L2, U2), there
is a q ∈ Q such that

(L1, U1) ≤ q ≤ (L2, U2).
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2 Numerical Series

From this section onward the standard results from a first Analysis course are a
prerequisite. For this section in particular you can (and will need to) use results
about numerical sequences.

Given a sequence (an)n∈N of real numbers, the infinite series
∞∑
n=0

an is a formal

expression of the form

∞∑
n=0

an = a0 + a1 + a2 + a3 + · · ·

The corresponding sequence of partial sums (sk)k∈N is defined by

sk = a1 + a2 + a3 + · · · ak.

If the sequence of partial sums converges, with limit s, we say that the series

∞∑
n=0

an

converges, and we write
∞∑
n=0

an = s.

We will often write
∑
an instead of

∞∑
n=0

an. Sometimes the summation will not start

at n = 0.

Task 2.1
Show that the series

∞∑
n=0

an converges if and only if there is a k ∈ N such that

∞∑
n=k

an converges.
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This task does not imply that for a given k 6= 0

∞∑
n=0

an =
∞∑
n=k

an.

The following are also direct consequences of the corresponding facts for sequences:

1. If b ∈ R and the series
∑
an converges, then the sum

∑
(b · an) converges as

well, and
∞∑
n=0

(b · an) = b ·
∞∑
n=0

an.

2. If the series
∑
an and

∑
bn both converge, then their sum

∑
(an+bn) converges

as well, and
∞∑
n=0

(an + bn) =
∞∑
n=0

an +
∞∑
n=0

bn.

Task 2.2
If an ≥ 0 for all n ∈ N, then

∑
an converges if and only if the corresponding

sequence of partial sums (sk) is bounded.

Task 2.3
Show that

∞∑
n=1

1

n2
converges.

Hint: Show that the partial sums satisfy sk ≤ 2− 1

k
.

This implies that

∞∑
n=1

1

n2
≤ 2. Euler showed that the limit is actually equal to

π2

6
≈ 1.64493.
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Task 2.4
Show that

∞∑
n=1

1

n
diverges (= does not converge).

Hint: Show that the partial sums satisfy s2k ≥ 1 +
k

2
.

Task 2.5
The series

∑
an converges if and only if for all ε > 0 there is an N ∈ N such

that whenever m > n ≥ N it follows that

|an+1 + an+2 + · · · am| < ε.

Task 2.6
If
∑
an converges, then (an) converges to 0.

Note that by the example in Task 2.4 the converse of Task 2.6 does not hold.

Task 2.7
Show: If the series

∞∑
n=0

|an| converges, so does
∞∑
n=0

an.

If
∞∑
n=0

|an| converges, we say that
∞∑
n=0

an converges absolutely. If on the other hand,

∞∑
n=0

an converges while

∞∑
n=0

|an| diverges, we say that

∞∑
n=0

an converges conditionally.
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Task 2.8
Show that the series

∞∑
n=0

(−1)n

n+ 1
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

converges conditionally.

The example above is a special case of the next task:

Task 2.9
Suppose the sequence (an) satisfies

1. a0 ≥ a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0, and

2. the sequence (an) converges to 0,

then
∞∑
n=0

(−1)nan converges.

Given a series

∞∑
n=0

an, we say the series

∞∑
n=0

bn is a rearrangement of

∞∑
n=0

an, if there

is a bijection ϕ : N→ N such that bϕ(n) = an for all n ∈ N.

Task 2.10
If the series

∞∑
n=0

an converges absolutely, then any rearrangement of
∞∑
n=0

an con-

verges to the same limit.

27



In other words: If a series is absolutely convergent, then it is “infinitely commuta-
tive.” If, on the other hand, a series converges only conditionally, then commuta-
tivity fails in a spectacular way:

Task 2.11
Suppose that the series

∞∑
n=0

an converges conditionally. Then for every s ∈ R,

there is a rearrangement
∞∑
n=0

bn of
∞∑
n=0

an such that
∞∑
n=0

bn converges to s.

Here are two hints to get you started on this problem:

1. Let a+n = max{an, 0} and a−n = max{−an, 0}. Thus an = a+n − a−n and

|an| = a+n + a−n . Observe that both series

∞∑
n=0

a+n and

∞∑
n=0

a−n do not converge.

Therefore both partial sums are not bounded.

2. The series in Task 2.8 actually converges to ln 2 ≈ 0.693147. Can you find a
recipe how to rearrange the series so that the rearrangement converges to 1
instead?
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3 Sequences and Series of Functions

3.1 Pointwise and Uniform Convergence

We now turn our attention to the convergence of sequences and series of functions.
Here is the natural definition to extend the notion of convergence from numbers to
functions:

Let D ⊆ R. Given functions fn : D → R and f : D → R, we say the sequence
(fn)n∈N converges to f pointwise if lim

n→∞
fn(x) = f(x) for all x ∈ D.

Equivalently, this means that for all x ∈ D and for all ε > 0 there is an N ∈ N such
that for all n ≥ N it follows that |fn(x)− f(x)| < ε.

Task 3.1
Let fn : [0, 1] → R be given by f(x) = xn. Find a suitable f : [0, 1] → R such
that (fn) converges to f pointwise.

This example reveals the first deficiency of pointwise convergence: the pointwise
limit of a sequence of continuous functions is not necessarily continuous.

The next example shows that the pointwise limit of a sequence of bounded functions
is not necessarily bounded. We say a function f : D → R is bounded if there is an
M > 0 such that |f(x)| ≤M for all x ∈ D.

Task 3.2
Let fn : (−1, 1) → R be given by fn(x) =

n∑
k=0

xk. Show that (fn) converges

pointwise to the function f(x) =
1

1− x
.

Let us say that a sequence fn : D → R is uniformly bounded, if there is an M > 0
such that |fn(x)| ≤M for all x ∈ D and n ∈ N.
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Assuming this extra assumption, we obtain a positive result:

Task 3.3
Suppose the sequence fn : D → R is uniformly bounded and converges pointwise
to the function f . Then f is bounded.

Pointwise convergence also does not interact nicely with Riemann integration:

Task 3.4
Let fn : [0, 1]→ R be given by

fn(x) =


0, if x = 0

n, if 0 < x ≤ 1
n

0, if 1
n < x ≤ 1

Show that this sequence converges pointwise to the zero-function.

Observe that

∫ 1

0
fn(x) dx = 1 for all n, while the pointwise limit has integral 0.

We have already seen in Task 3.1 that the pointwise limit of differentiable functions
is not necessarily differentiable. The next example shows that even in the case
when the pointwise limit is differentiable, its derivative does not necessarily have
the desired properties.

Task 3.5
Let fn : [−1, 1] → R be defined by fn(x) =

x

1 + nx2
. Show that each fn is

differentiable, that (fn) has as its pointwise limit f the zero function, but that
lim
n→∞

f ′n(0) 6= f ′(0).
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Figure 1: The functions f2, f10 and f100 from Task 3.5

All these examples show that pointwise convergence is not such a useful property14.

We will therefore study a different limit concept for functions:

Let D ⊆ R. Given functions fn : D → R and f : D → R, we say the sequence
(fn)n∈N converges to f uniformly if for all ε > 0 there is an N ∈ N such that for all
n ≥ N and for all x ∈ D it follows that |fn(x)− f(x)| < ε.

Task 3.6
Let functions fn : D → R and f : D → R be given. If (fn) converges to f
uniformly, then (fn) converges to f pointwise.

Task 3.7
Show that the converse of Task 3.6 is false.

14Actually, in the case of integration, this led to the development of a different notion of integra-
tion: the Lebesgue integral with its Dominated Convergence Theorem.
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Figure 2: Uniform convergence: The function fn (in black) lies in an ε-tube around
the function f (in gray).

Task 3.8
Let a sequence of functions fn : D → R be given. The sequence (fn) converges
uniformly if and only if for all ε > 0 there is an n ∈ N such that for all x ∈ D
and for all m,n ≥ N it follows that |fm(x)− fn(x)| < ε.

Task 3.9
Let a sequence of functions fn : D → R and numbers Mn ≥ 0 be given. Suppose

|fn(x)| ≤Mn for all x ∈ D and n ∈ N.

Show: If
∑
Mn converges, then

∑
fn converges uniformly (and absolutely).

The next two results highlight some of the permanence properties of uniform con-
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vergence:

Task 3.10
Let fn : D → R be continuous functions such that (fn)n∈N converges uniformly
to some function f . Then f is continuous.

Task 3.11
Let fn : D → R be bounded functions such that (fn)n∈N converges uniformly to
some function f . Then f is bounded.

There are two more permanence results for uniform convergence:

Theorem 3.1. Let fn : [a, b]→ R be Riemann-integrable functions such that (fn)

converges uniformly to some function f . For t ∈ [a, b], let Fn(t) =

∫ t

a
fn(x) dx.

Then f is Riemann integrable, and moreover (Fn) converges uniformly to the func-

tion F , defined by F (t) =

∫ t

a
f(x) dx.

Theorem 3.2. Let fn : [a, b] → R be differentiable functions such that (f ′n) con-
verges uniformly to some function g. Assume additionally that for some x0 ∈ [a, b]
the sequence (fn(x0)) converges.

Then (fn) converges uniformly to some function f , f is differentiable on [a, b], and
f ′(x) = g(x) for all x ∈ [a, b].
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