CRN11378: Final Projects

From Classes
(Difference between revisions)
Jump to: navigation, search
 
(2 intermediate revisions by one user not shown)
Line 11: Line 11:
 
*The group will be graded foremost on the mathematical correctness and mathematical clarity of their presentation and their written report. Other criteria include the completeness of the written report, the quality of the group presentation, making effective use of the allotted time, and staying within the time frame of 10 minutes for the oral presentation.
 
*The group will be graded foremost on the mathematical correctness and mathematical clarity of their presentation and their written report. Other criteria include the completeness of the written report, the quality of the group presentation, making effective use of the allotted time, and staying within the time frame of 10 minutes for the oral presentation.
  
*Projects will be assigned on '''Tuesday, November 12'''.
+
*Projects will be assigned on '''<font color=red>Thursday</font>, November <font color=red>14</font>'''.
  
  
 
*'''Topics:'''
 
*'''Topics:'''
# The Schroeder-Bernstein Lemma (Exercise 1.5.11, 1.5.7)
+
# '''Hillary & Sinai:'''  The Schroeder-Bernstein Lemma (Exercise 1.5.11, 1.5.7)
# Perfect Sets (Section 3.4, 1st part)
+
# '''Ashley & Berannia:''' Perfect Sets (Section 3.4, 1st part)
 
# Connected Sets (Section 3.4, 2nd part)
 
# Connected Sets (Section 3.4, 2nd part)
# [http://helmut.knaust.info/class/201220_4303/FTAlgebra.pdf A Proof of the Fundamental Theorem of Algebra]*
+
# '''Jonathan  & Ricardo:''' [http://helmut.knaust.info/class/201220_4303/FTAlgebra.pdf A Proof of the Fundamental Theorem of Algebra]*
# Sets of Discontinuity (Section 4.6)
+
# '''Gicela & Victoria:''' Sets of Discontinuity (Section 4.6)
# [http://helmut.knaust.info/class/201410_3341/Euler-M.pdf The Euler-Mascheroni Constant]  
+
# '''Gisella & Natalia:''' [http://helmut.knaust.info/class/202010_3341/Euler-M.pdf The Euler-Mascheroni Constant]  
 
# A Continuous Nowhere Differentiable Function (Section 5.4)*
 
# A Continuous Nowhere Differentiable Function (Section 5.4)*
  

Latest revision as of 14:59, 5 December 2019

  • The final project will account for 25% of your course grade.
  • Groups of two students each will work on one of the final projects.
  • Deliverables consist of a complete written solution (target length: five pages) and a 10-minute presentation. (There are some starred projects with no written report.) The paper does not need to be typeset if the handwriting is legible. Don't forget to include the references you use!
  • The projects will be presented during the last class day on Thursday, December 5, at 12:00-13:20. The accompanying papers are due before the start of the presentations.
  • The student group will be graded as a group. All group members must contribute to both the written solution and the presentation in equal parts.
  • The group will be graded foremost on the mathematical correctness and mathematical clarity of their presentation and their written report. Other criteria include the completeness of the written report, the quality of the group presentation, making effective use of the allotted time, and staying within the time frame of 10 minutes for the oral presentation.
  • Projects will be assigned on Thursday, November 14.


  • Topics:
  1. Hillary & Sinai: The Schroeder-Bernstein Lemma (Exercise 1.5.11, 1.5.7)
  2. Ashley & Berannia: Perfect Sets (Section 3.4, 1st part)
  3. Connected Sets (Section 3.4, 2nd part)
  4. Jonathan & Ricardo: A Proof of the Fundamental Theorem of Algebra*
  5. Gicela & Victoria: Sets of Discontinuity (Section 4.6)
  6. Gisella & Natalia: The Euler-Mascheroni Constant
  7. A Continuous Nowhere Differentiable Function (Section 5.4)*


Advice on Giving a Good PowerPoint Presentation, by Joseph Gallian. | PPT version
Grading Rubric
An example: Exploring Machin's Approximation of $\pi$.

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox