CRN 25156

From Classes
(Difference between revisions)
Jump to: navigation, search
(Open Problems)
(Materials)
 
(33 intermediate revisions by one user not shown)
Line 49: Line 49:
 
* '''Counseling Center.''' You are encouraged to go to Counseling and Psychological Services (202 Union West) for personal assistance as you work through personal concerns. Confidential counseling services are offered in English or in Spanish.  
 
* '''Counseling Center.''' You are encouraged to go to Counseling and Psychological Services (202 Union West) for personal assistance as you work through personal concerns. Confidential counseling services are offered in English or in Spanish.  
  
* '''Disabilities.''' If you have a disability and need special accommodation, please contact the Center for Accommodations and Support Services (CASS).  The Center aspires to provide students accommodations and support services to help them pursue their academic, graduation, and career goals.  Phone 747-948. E-mail: cass@utep.edu.
+
* '''Disabilities.''' If you have a disability and need special accommodation, please contact the Center for Accommodations and Support Services (CASS).  The Center aspires to provide students accommodations and support services to help them pursue their academic, graduation, and career goals.  Phone 747-5148. E-mail: cass@utep.edu.
  
 
===Programming Projects===
 
===Programming Projects===
 +
[http://helmut.knaust.info/class/202420_5311/Project04.nb Project 4], due date: April 11 |
 
[http://helmut.knaust.info/class/202420_5311/Project03.nb Project 3], due date: March 26 |  
 
[http://helmut.knaust.info/class/202420_5311/Project03.nb Project 3], due date: March 26 |  
 
[http://helmut.knaust.info/class/202420_5311/Project02.nb Project 2], due date: February 22 |  
 
[http://helmut.knaust.info/class/202420_5311/Project02.nb Project 2], due date: February 22 |  
Line 57: Line 58:
  
 
===[http://helmut.knaust.info/class/202420_5311/NB/ ''Mathematica'' Notebooks]===
 
===[http://helmut.knaust.info/class/202420_5311/NB/ ''Mathematica'' Notebooks]===
 +
 +
===[http://helmut.knaust.info/class/202420_5311/202420_FinalProject.nb Final Projects]===
 +
*Team 1 - Project 1: Frederick, Jeff and Lundy
 +
*Team 2 - Project 2: Bright and Michael
 +
*Team 3 - Project 5: Eric and Samuel
  
 
==Homework==
 
==Homework==
  
 
===Open Problems===
 
===Open Problems===
* Exercise 1,2,3,4,5,6,7 of the Haar handout.
+
* p.360: 8.57, 8.60, 8.62
* '''Ex. 2''' Let <math>f: \mathbb{R}\to\mathbb{R}</math> be a real-valued function. Show that f can be written as the sum of an odd and an even function.
+
* p.65: 2.59, 2.63
* '''Ex. 1 '''Compute the Fourier coefficients of <math>f(t)=|t|</math>
+
* Exercise 6,7 of the [http://helmut.knaust.info/class/202220_5311//MRA/MRA.pdf Haar handout].
 
*p.120: 3.37, 3.48ac
 
*p.120: 3.37, 3.48ac
*p.88: 3.7ab
 
  
 
===Homework Assignments===
 
===Homework Assignments===
 +
* p.360: 8.48, 8.53, 8.57, 8.60, 8.62
 +
* p.65: 2.47, 2.51, 2.59, 2.63, 2.64a
 +
*p.344: 8.28, 8.35abc, 8.37c, 8.42, 8.46
 +
* Exercise 1,2,3,4,5,6,7 of the [http://helmut.knaust.info/class/202220_5311//MRA/MRA.pdf  Haar handout].
 
* '''Ex. 2''' Let <math>f: \mathbb{R}\to\mathbb{R}</math> be a real-valued function. Show that f can be written as the sum of an odd and an even function.
 
* '''Ex. 2''' Let <math>f: \mathbb{R}\to\mathbb{R}</math> be a real-valued function. Show that f can be written as the sum of an odd and an even function.
 
* '''Ex. 1 '''Compute the Fourier coefficients of <math>f(t)=|t|</math>  
 
* '''Ex. 1 '''Compute the Fourier coefficients of <math>f(t)=|t|</math>  
Line 79: Line 88:
 
===[[Day2| Day 2 Assignment]]===
 
===[[Day2| Day 2 Assignment]]===
 
===Materials===
 
===Materials===
 +
[http://helmut.knaust.info/class/202420_5311/Quantization.pdf Quantization Schemes] | [http://helmut.knaust.info/BD/Gallian.pdf  Advice on Giving a Good PowerPoint Presentation], by Joseph Gallian. [http://helmut.knaust.info/class/202420_5311/PPTs.pdf As a Power Point Presentation] | [http://helmut.knaust.info/class/202320_5311/D4.pdf Computing the Daubechies-4 coefficients] |
 
[http://helmut.knaust.info/class/202220_5311//MRA/MRA.pdf  Multi-Resolution Analysis for the Haar Wavelet] | [http://helmut.knaust.info/class/201810_5311/ShETh.pdf Towards Shannon's Entropy Theorem] | [http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf  David A. Huffman: ''A Method for the Construction of Minimum-Redundancy Codes.''] Proceedings of the I.R.E., September 1952, pp. 1098–1101. |  [http://helmut.knaust.info/class/201310_5311/Images.zip Photo set] | [http://helmut.knaust.info/class/201810_5311/Reformat_cells.pdf How to display matrices the "right" way ] | [http://helmut.knaust.info/presentations/2009/20091016_DWT/DWT.pdf Course Overview]
 
[http://helmut.knaust.info/class/202220_5311//MRA/MRA.pdf  Multi-Resolution Analysis for the Haar Wavelet] | [http://helmut.knaust.info/class/201810_5311/ShETh.pdf Towards Shannon's Entropy Theorem] | [http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf  David A. Huffman: ''A Method for the Construction of Minimum-Redundancy Codes.''] Proceedings of the I.R.E., September 1952, pp. 1098–1101. |  [http://helmut.knaust.info/class/201310_5311/Images.zip Photo set] | [http://helmut.knaust.info/class/201810_5311/Reformat_cells.pdf How to display matrices the "right" way ] | [http://helmut.knaust.info/presentations/2009/20091016_DWT/DWT.pdf Course Overview]
  
Line 98: Line 108:
 
* p.65: 2.47, 2.51, 2.57, 2.59, 2.63, 2.64a
 
* p.65: 2.47, 2.51, 2.57, 2.59, 2.63, 2.64a
 
*p.344: 8.28, 8.33ab, 8.35abc, 8.37c, 8.42, 8.46
 
*p.344: 8.28, 8.33ab, 8.35abc, 8.37c, 8.42, 8.46
* '''Haar Ex.''' 1, 2, 3, 4, 5, 6, 7
+
 
* '''Ex. 4 '''Show that  <math>c_{-k} e^{-ikt}+c_{k} e^{ikt}</math> is real when f is a real valued function.
+
* '''Ex. 3 '''Compute the (complex) Fourier coefficients of <math>f(t)=t</math>
+
* '''Ex. 2 '''Compute the (sine and cosine) Fourier coefficients of <math>f(t)=|t|</math>
+
* '''Ex. 1''' (a) Compute <math>\|\cos(kt)\|_2</math> for all k. (b) Can you find c such that <math>\|c\cos(kt)\|_2=1</math> for all k?
+
*p.120: 3.36,3.37,3.48ac
+
*p.113: 3.28, 3.29, 3.32ab, 3.33
+
*p.106: 3.26ab
+
*p.88: 3.4abc, 3.7, 3.8, 3.9abc
+
*p.38: 2.23, 2.30, 2.33
+
*p.21: 2.3ab, 2.7, 2.10ab, 2.12, 2.13
+
  
 
===Reading===
 
===Reading===

Latest revision as of 12:45, 25 April 2024

[edit] Syllabus

  • Topic. Math 5311/6311 Applied Mathematics: Discrete Wavelets and Image Processing.
  • Time and Place. TR 12:00-13:20, BELL 130A.
  • Office Hours. TR 13:30-14:30, or by appointment.
  • Prerequisites. The course has a very applied flavor. Knowledge of fundamental Calculus is required; some familiarity with matrices may be helpful. You will use Mathematica extensively, but prior knowledge is not expected. On the other hand, this is an advanced mathematics course, so you should have some mathematical maturity.
  • Course Objectives. We will study a recent topic in mathematics (discrete wavelets), and how it is applied to the practical problem of image processing and compression. While some of the underlying ideas go back to Joseph Fourier (1768-1830) and Alfred Haar (1885-1933), most of the material you will see is not older than 40 years. During the course you should expect (and I will expect) that you make considerable progress in the following areas:
  1. Develop an understanding of the theoretical underpinnings of wavelet transforms and their applications.
  2. Learn how to use a computer algebra system for mathematical investigations, as a computational and visualization aid, and for the implementation of mathematical algorithms.
  3. Get a flavor of the ideas and issues involved in applying mathematics to a relevant engineering problem.
  4. Be able to give and defend a mathematical presentation to a group of your peers.
  • Class Participation and Homework. I will regularly assign homework. The homework will not be collected, but presented by student volunteers. Your homework grade will contribute 10% to your grade.
  • Tests. Two exams will be given on the following dates: Thursday, Febrary 29, and Tuesday, April 23. Each exam counts 20% of your grade.
  • Projects. You will complete several individual programming projects. These projects will be graded and contribute a combined total of 20% to your grade.
  • Final Project. Student pairs will prepare and present a comprehensive final project during finals week. The final project will count 30% of your grade.
  • Time Requirement. I expect that you spend an absolute minimum of nine hours a week reading the textbook, preparing for the next class, reviewing your class notes, and completing homework and project assignments. Not surprisingly, it has been my experience that there is a strong correlation between class grade and study time.
  • Drop Policy. The class schedule lists Thursday, March 28, as the last day to drop with an automatic "W". After the deadline, I will only be able to drop you from the course with a grade of "F".
  • Academic Integrity. All students must abide by UTEP's academic integrity policies. For detailed information visit the Office of Student Conduct and Conflict Resolution (OSCCR) website. Academic Integrity is a commitment to fundamental values. From these values flow principles of behavior that enable academic communities to translate ideals into action.” Specifically, these values are defined as follows:
    • Honesty: advances the quest for truth and knowledge by requiring intellectual and personal honesty in learning, teaching, research, and service.
    • Trust: fosters a climate of mutual trust, encourages the free exchange of ideas, and enables all to reach their highest potential.
    • Fairness: establishes clear standards, practices, and procedures and expects fairness in the interaction of students, faculty, and administrators.
    • Respect: recognizes the participatory nature of the learning process and honors and respects a wide range of opinions and ideas.
    • Responsibility: upholds personal responsibility and depends upon action in the face of wrongdoing.
  • Military Service. If you are a military student with the potential of being called to military service and/or training during the course of the semester, contact the instructor as soon as possible.
  • Counseling Center. You are encouraged to go to Counseling and Psychological Services (202 Union West) for personal assistance as you work through personal concerns. Confidential counseling services are offered in English or in Spanish.
  • Disabilities. If you have a disability and need special accommodation, please contact the Center for Accommodations and Support Services (CASS). The Center aspires to provide students accommodations and support services to help them pursue their academic, graduation, and career goals. Phone 747-5148. E-mail: cass@utep.edu.

[edit] Programming Projects

Project 4, due date: April 11 | Project 3, due date: March 26 | Project 2, due date: February 22 | Project 1, due date: February 6 8.

[edit] Mathematica Notebooks

[edit] Final Projects

  • Team 1 - Project 1: Frederick, Jeff and Lundy
  • Team 2 - Project 2: Bright and Michael
  • Team 3 - Project 5: Eric and Samuel

[edit] Homework

[edit] Open Problems

  • p.360: 8.57, 8.60, 8.62
  • p.65: 2.59, 2.63
  • Exercise 6,7 of the Haar handout.
  • p.120: 3.37, 3.48ac

[edit] Homework Assignments

  • p.360: 8.48, 8.53, 8.57, 8.60, 8.62
  • p.65: 2.47, 2.51, 2.59, 2.63, 2.64a
  • p.344: 8.28, 8.35abc, 8.37c, 8.42, 8.46
  • Exercise 1,2,3,4,5,6,7 of the Haar handout.
  • Ex. 2 Let \(f: \mathbb{R}\to\mathbb{R}\) be a real-valued function. Show that f can be written as the sum of an odd and an even function.
  • Ex. 1 Compute the Fourier coefficients of \(f(t)=|t|\)
  • p.120: 3.36,3.37, 3.48ac
  • p.113: 3.28, 3.29, 3.32ab, 3.33
  • p.106: 3.26ab
  • p.88: 3.4abc, 3.7ab, 3.8
  • p.38: 2.23, 2.30, 2.33
  • p.21: 2.3ab, 2.7, 2.10ab, 2.12, 2.13ac

[edit] Day 2 Assignment

[edit] Materials

Quantization Schemes | Advice on Giving a Good PowerPoint Presentation, by Joseph Gallian. As a Power Point Presentation | Computing the Daubechies-4 coefficients | Multi-Resolution Analysis for the Haar Wavelet | Towards Shannon's Entropy Theorem | David A. Huffman: A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the I.R.E., September 1952, pp. 1098–1101. | Photo set | How to display matrices the "right" way | Course Overview



Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox