CRN 24448

From Classes
(Difference between revisions)
Jump to: navigation, search
(Created page with "==Syllabus== __NOTOC__ __MATHJAX_NODOLLAR__ * '''Topic.''' Math 5311 Applied Mathematics: Discrete Wavelets and Image Processing. * '''Time and Place.''' TR 12:00-13:20, CRB...")

Revision as of 17:18, 19 January 2025

Syllabus

  • Topic. Math 5311 Applied Mathematics: Discrete Wavelets and Image Processing.
  • Time and Place. TR 12:00-13:20, CRBL C203.
  • Office Hours. TR 13:30-14:30, or by appointment.
  • Prerequisites. The course has a very applied flavor. Knowledge of fundamental Calculus is required; some familiarity with matrices may be helpful. You will use Mathematica extensively, but prior knowledge is not expected. On the other hand, this is an advanced mathematics course, so you should have some mathematical maturity.
  • Course Objectives. We will study a recent topic in mathematics (discrete wavelets), and how it is applied to the practical problem of image processing and compression. While some of the underlying ideas go back to Joseph Fourier (1768-1830) and Alfred Haar (1885-1933), most of the material you will see is not older than 40 years. During the course you should expect (and I will expect) that you make considerable progress in the following areas:
  1. Develop an understanding of the theoretical underpinnings of wavelet transforms and their applications.
  2. Learn how to use a computer algebra system for mathematical investigations, as a computational and visualization aid, and for the implementation of mathematical algorithms.
  3. Get a flavor of the ideas and issues involved in applying mathematics to a relevant engineering problem.
  4. Be able to give and defend a mathematical presentation to a group of your peers.
  • Class Participation and Homework. I will regularly assign homework. The homework will not be collected, but presented by student volunteers. Your homework grade will contribute 10% to your grade.
  • Tests. Two exams will be given on the following dates: Thursday, Febrary 29, and Tuesday, April 23. Each exam counts 20% of your grade.
  • Projects. You will complete several individual programming projects. These projects will be graded and contribute a combined total of 20% to your grade.
  • Final Project. Student pairs will prepare and present a comprehensive final project during finals week. The final project will count 30% of your grade.
  • Time Requirement. I expect that you spend an absolute minimum of nine hours a week reading the textbook, preparing for the next class, reviewing your class notes, and completing homework and project assignments. Not surprisingly, it has been my experience that there is a strong correlation between class grade and study time.
  • Drop Policy. The class schedule lists Thursday, March 28, as the last day to drop with an automatic "W". After the deadline, I will only be able to drop you from the course with a grade of "F".
  • Academic Integrity. All students must abide by UTEP's academic integrity policies. For detailed information visit the Office of Student Conduct and Conflict Resolution (OSCCR) website. Academic Integrity is a commitment to fundamental values. From these values flow principles of behavior that enable academic communities to translate ideals into action.” Specifically, these values are defined as follows:
    • Honesty: advances the quest for truth and knowledge by requiring intellectual and personal honesty in learning, teaching, research, and service.
    • Trust: fosters a climate of mutual trust, encourages the free exchange of ideas, and enables all to reach their highest potential.
    • Fairness: establishes clear standards, practices, and procedures and expects fairness in the interaction of students, faculty, and administrators.
    • Respect: recognizes the participatory nature of the learning process and honors and respects a wide range of opinions and ideas.
    • Responsibility: upholds personal responsibility and depends upon action in the face of wrongdoing.
  • Military Service. If you are a military student with the potential of being called to military service and/or training during the course of the semester, contact the instructor as soon as possible.
  • Counseling Center. You are encouraged to go to Counseling and Psychological Services (202 Union West) for personal assistance as you work through personal concerns. Confidential counseling services are offered in English or in Spanish.
  • Disabilities. If you have a disability and need special accommodation, please contact the Center for Accommodations and Support Services (CASS). The Center aspires to provide students accommodations and support services to help them pursue their academic, graduation, and career goals. Phone 747-5148. E-mail: cass@utep.edu.

Programming Projects

Project 4, due date: April 11 | Project 3, due date: March 26 | Project 2, due date: February 22 | Project 1, due date: February 6 8.

Mathematica Notebooks

Final Projects

  • Team 1 - Project 1: Frederick, Jeff and Lundy
  • Team 2 - Project 2: Bright and Michael
  • Team 3 - Project 5: Eric and Samuel

Homework

Open Problems

  • p.360: 8.57, 8.60, 8.62
  • p.65: 2.59, 2.63
  • Exercise 6,7 of the Haar handout.
  • p.120: 3.37, 3.48ac

Homework Assignments

  • p.360: 8.48, 8.53, 8.57, 8.60, 8.62
  • p.65: 2.47, 2.51, 2.59, 2.63, 2.64a
  • p.344: 8.28, 8.35abc, 8.37c, 8.42, 8.46
  • Exercise 1,2,3,4,5,6,7 of the Haar handout.
  • Ex. 2 Let \(f: \mathbb{R}\to\mathbb{R}\) be a real-valued function. Show that f can be written as the sum of an odd and an even function.
  • Ex. 1 Compute the Fourier coefficients of \(f(t)=|t|\)
  • p.120: 3.36,3.37, 3.48ac
  • p.113: 3.28, 3.29, 3.32ab, 3.33
  • p.106: 3.26ab
  • p.88: 3.4abc, 3.7ab, 3.8
  • p.38: 2.23, 2.30, 2.33
  • p.21: 2.3ab, 2.7, 2.10ab, 2.12, 2.13ac

Day 2 Assignment

Materials

Quantization Schemes | Advice on Giving a Good PowerPoint Presentation, by Joseph Gallian. As a Power Point Presentation | Computing the Daubechies-4 coefficients | Multi-Resolution Analysis for the Haar Wavelet | Towards Shannon's Entropy Theorem | David A. Huffman: A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the I.R.E., September 1952, pp. 1098–1101. | Photo set | How to display matrices the "right" way | Course Overview



Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox